The Newton polytope of the Kronecker product
Greta Panova and Chenchen Zhao
Department of Mathematics, University of Southern California, Los Angeles, CA 90089

Saturated Newton polytope

A multivariate polynomial with nonnegative coefficients $f\left(x_{1}, \ldots, x_{k}\right)=\sum_{\alpha} c_{\alpha} x^{\alpha}$
has a saturated Newton polytope (SNP) if the set of points $M_{k}(f):=\left\{\left(\alpha_{1}, \cdots, \alpha_{k}\right)\right.$ $\left.c_{\alpha}>0\right\}$ coincides with its convex hull in \mathbb{Z}

The Kronecker product

The Kronecker coefficients of S_{n}, denoted by $g(\lambda, \mu, \nu)$, give the multiplicities of one irreducible Specht module in the tensor product of the other two, namely

$$
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\oplus g(\lambda, \mu, \nu)} .
$$

The Kronecker product $*$ of symmetric functions is defined on the Schur basis as

$$
s_{\lambda} * s_{\mu}:=\sum g(\lambda, \mu, \nu) s_{\nu},
$$

and extended by linearity. It is equivalent to the inner product of S_{n} characters under the characteristic map.

SNP for the Kronecker product

Conjecture 1 (Monical-Tokcan-Yong, 2019, [3]
The Kronecker product $s_{\lambda} * s_{\mu}$ has a saturated Newton polytope
We prove this conjecture for partitions of lengths 2 and 3 :

Theorem 1 (Panova-Zhao, 2023, [4])

Let $\lambda, \mu \vdash n$ with $\ell(\lambda) \leq 2, \ell(\mu) \leq 3$, and $\mu_{1} \geq \lambda_{1}$ then $s_{\lambda} * s_{\mu}\left(x_{1}, \ldots, x_{k}\right)$ has a saturated Newton polytope for every k.
Proof idea: The Kronecker product in these cases contains a term s_{ν} with ν dom inating all other partitions appearing. Thus the Newton polytope consists of all integer points $\left(a_{1}, \ldots, a_{k}\right)$, such that $\operatorname{sort}\left(a_{1}, \ldots, a_{k}\right) \preceq \nu$ in the dominance order.

Example

However, we cannot expect to have unique maximal terms in genera

$s_{(6,6)} * s_{(8,2,1,1)}=s_{(4,4,2,1,1)}+s_{(4,4,3,1)}+s_{(5,3,1,1,1,1)}+s_{(5,3,2,1,1)}+s_{(5,3,2,2)}+s_{(5,3,3,1)}+$ $2 s_{(5,4,1,1,1)}+3 s_{(5,4,2,1)}+s_{(5,4,3)}+s_{(5,5,1,1)}+2 s_{(5,5,2)}+s_{(6,2,2,1,1)}+2 s_{(6,3,1,1,1)}+3 s_{(6,3,2,1)}+$ $s_{(6,3,3)}+4 s_{(6,4,1,1)}+2 s_{(6,4,2)}+2 s_{(6,5,1)}+s_{(7,2,1,1,1)}+s_{(7,2,2,1)}+2 s_{(7,3,1,1)}+2 s_{(7,3,2)}+2 s_{(7,4,1)}+$
$s_{(7,5)}+s_{(8,2,1,1)}+s_{(8,3,1)}$.
In this product, $(7,5)$ and $(8,3,1)$ are incomparable maximal.
The first case when there is no such dominant partition is covered in the following
Theorem 2 (Two and three-row partitions, [4])
Let $\lambda, \mu \vdash n$ with $\ell(\lambda) \leq 2$ and $\ell(\mu) \leq 3$. Then $s_{\lambda} * s_{\mu}\left(x_{1}, x_{2}, x_{3}\right)$ has a saturated Newton polytope.

The limit case

Theorem 3 (The limit case, [4]

Let λ, μ be partitions of the same size and $k \in \mathbb{N}$. Then the set of points

$$
\bigcup_{p=1}^{\infty} \frac{1}{p} M_{k}\left(s_{p \lambda} * s_{p \mu}\right)
$$

is a convex subset of \mathbb{Q}^{k}.
Conjecture 1 holds in the "limit

Monomial expansion via multi-LR coefficients

The multi-LR coefficients can be defined recursively as

$$
c_{\nu^{1} \nu^{2} \ldots}^{\lambda}:=\left\langle s_{\lambda}, s_{\nu^{1}} s_{\nu^{2}} \cdots\right\rangle=\sum c_{\nu^{1} \tau^{2}}^{\lambda} c_{\nu^{2} \tau^{2}}^{\tau^{1}}
$$

Coefficient of $\mathbf{x}^{\mathbf{a}}$ in $s_{\lambda} * s_{\mu}$, where $\mathbf{a}:=\left(a_{1}, a_{2}, \ldots\right)$

$$
\left\langle s_{\lambda}(y) * s_{\mu}(z), h_{\mathrm{a}}[y z]\right\rangle=\sum_{\alpha^{i} \vdash a_{i} i=1, \ldots, . .} c_{\alpha^{1} \alpha^{2} \ldots .}^{\lambda} c_{\alpha^{1} \alpha^{2} \ldots}^{\mu}
$$

$P(\mu ; \mathbf{a}):=\left\{\left(\alpha^{1}, \alpha^{2}, \cdots, \alpha^{k}\right) \in \mathbb{Z}_{\geq 0}^{\ell(\mu) k}: c_{\alpha^{1} \alpha^{2} \ldots}^{\mu}>0\right.$ and $\left|\alpha^{i}\right|=a_{i}$ for $\left.i=1, \ldots, k\right\}$.
Then, the set of monomial degrees $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ appearing in $s_{\lambda} * s_{\mu}$ is given as
$M_{k}\left(s_{\lambda} * s_{\mu}\right)=\left\{\mathbf{a} \in \mathbb{Z}_{\geq 0}^{k}: P(\lambda ; \mathbf{a}) \cap P(\mu ; \mathbf{a}) \neq \emptyset\right\}$

Horn inequalities for multi-LR's

Theorem 3 (van Leeuwen, [5])
Let λ, μ, ν be partitions such that $|\lambda|=|\mu|+|\nu|$. Then $c_{\mu \nu}^{\lambda}=\left\langle s_{\lambda}, s_{\mu \nu \nu}\right\rangle$, where $\mu \diamond \nu$ denotes the skew shape $\left(\nu_{1}^{\ell(\mu)}+\mu, \nu\right) / \nu$

For a subset $I=\left\{i_{1}<i_{2}<\cdots<i_{s}\right\} \subset[r]$, let $\rho(I)$ denote the partition $\rho(I):=$ $\left(i_{s}-s, \ldots, i_{2}-2, i_{1}-1\right)$. A triple of subsets $I, J, K \subset[r]$ is $L R$-consistent if they have the same cardinality s and $c_{\rho(J), \rho(K)}^{\rho(I)}=1$.

Theorem 4 (Zelevinsky, Klyachko, Knutson-Tao, [6, 1, 2])
Let $\lambda, \mu, \nu \in \mathbb{N}^{r}$ with weakly decreasing component. Then $c_{\mu, \nu}^{\lambda}>0$ if and only if $|\lambda|=|\mu|+|\nu|$ and $\sum_{i \in I} \lambda_{i} \leq \sum_{j \in J} \mu_{j}+\sum_{k \in K} \nu_{k}$ for all $L R$-consistent triples $I, J, K \subset[r]$.

Corollary 4.1

Let $\ell(\mu)=\ell$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$. Then

$$
\begin{aligned}
P(\mu ; \mathbf{a})=\left\{\left(\alpha^{1}, \ldots, \alpha^{k}\right) \in \mathbb{Z}_{\geq 0}^{k k_{0}}\right. & : \\
\sum_{j} \alpha_{j}^{i} & =a_{i}, \quad \text { for } i \in[k] ; \\
\alpha_{j}^{i} & \geq \alpha_{j+1,}^{i}, \quad \text { for } j \in[\ell-1], i \in[k] ; \\
\sum\left(n(k-i)+\alpha_{j}^{i}\right) & \left.\leq \sum^{i} \mu_{j}+\sum n(k-d)\right\},
\end{aligned}
$$

where the last inequalities hold for all LR-consistent triples $I, K \in[\rho k]$

Main References

1] Alexander A Klyachko. Stable bundles, representation theory and hermitian operators. Selecta Mathematica, New Series, 4(3):419-445. 1998
[2] Allen Knutson and Terence Tao. The honeycomb model of $\mathrm{GL}_{n}(\mathbb{C})$ tensor products I: Proof of the saturation conjecture. Journal of the American Mathematical Society, 12(4):1055-1090, 1999.
[3] Cara Monical, Neriman Tokcan, and Alexander Yong. Newton polytopes in algebraic combinatorics. Selecta Mathematica, 25(5):66, 2019
[4] Greta Panova and Chenchen Zhao. The newton polytope of the kronecker product. arXiv preprint 2311.10276, 2023
[5] Marc AA van Leeuwen. The littlewood-richardson rule, and related combinatorics. Interaction of combinatorics and representation theorry, 11:95-145, 2001.
[6] Andrei Zelevinsky. Littlewood-richardson semigroups. arXiv preprint math/9704228, 1997.

The polytope for $k=3$

Let $\ell(\lambda)=2$ and $\ell(\mu)=3$. Consider $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$. Let $x:=\alpha_{1}^{1}, y:=\alpha_{1}^{2}, z:=\alpha_{1}^{3}$ When $\mu_{1}<\lambda_{1}, P(\lambda ; \mathbf{a}) \cap P(\mu ; \mathbf{a}) \neq \emptyset$ is equivalent to $\mathcal{Q}(\lambda, \mu, \mathbf{a}) \cap \mathbb{Z}^{3} \neq \emptyset$.

$$
\mathcal{Q}(\lambda, \mu, \mathbf{a}):=\left\{(x, y, z) \in \mathbb{R}^{3} \text { s.t. } a_{1}-\min \left(\mu_{2}, \lambda_{2}, \frac{a_{1}}{2}\right) \leq x \leq \min \left(a_{1}, \mu_{1}\right)\right.
$$

$a_{2}-\min \left(\mu_{2}, \lambda_{2}, \frac{a_{2}}{2}\right) \leq y \leq \min \left(a_{2}, \mu_{1}\right)$
$a_{3}-\min \left(\mu_{2}, \lambda_{2}, \frac{a_{3}}{2}\right) \leq z \leq \min \left(a_{3}, \mu_{1}\right)$
$\max \left(\mu_{3}, a_{1}+a_{2}-\mu_{1}\right) \leq x+y$
$\max \left(\mu_{3}, a_{1}+a_{3}-\mu_{1}\right) \leq x+z$
$\max \left(\mu_{3}, a_{2}+a_{3}-\mu_{1}\right) \leq y+z$
$\max \left(\mu_{2}, \lambda_{2}\right)-a_{1} \leq-x+y+z \leq \mu_{1}+\mu_{2}-a_{1}$
$\max \left(\mu_{2}, \lambda_{2}\right)-a_{2} \leq x-y+z \leq \mu_{1}+\mu_{2}-a_{2}$
$\left.\max \left(\mu_{2}, \lambda_{2}\right)-a_{3} \leq x+y-z \leq \mu_{1}+\mu_{2}-a_{3}\right\}$

Analyzing $\mathcal{Q}(\lambda, \mu, \mathbf{c})$, [4

- Suppose that $\mathcal{Q}\left(\lambda, \mu, \mathbf{a}^{i}\right) \neq \emptyset$ for some vectors $\mathbf{a}^{i}, i=1, \ldots, 4$ and $\mathbf{c}=\sum_{i} t_{i} \mathbf{a}^{i}$ for some $t_{i} \in[0,1]$ with $t_{1}+t_{2}+t_{3}+t_{4}=1$. Then $\mathcal{Q}(\lambda, \mu, \mathbf{c}) \neq \emptyset$.
[4, Theorem 2] If $\mathcal{Q}(\lambda, \mu, \mathbf{a}) \neq \emptyset$ then it has an integer point, i.e.
$\mathcal{Q}(\lambda, \mu, \mathbf{a}) \cap \mathbb{Z}^{3} \neq \emptyset$.

Figure 1. $\mathcal{Q}(\lambda, \mu ; \mathbf{a})$ where $\lambda=(7,6,5), \mu=(13,5)$ and $\mathbf{a}=(9,6,3)$.

Kronecker positivity implications

[^0]
[^0]: If $g(\lambda, \mu, \nu)>0$, then s_{ν} appears in $s_{\lambda} * s_{\mu}$, and so its leading monomial m_{ν} also appears, so $\mathcal{Q}(\lambda, \mu, \nu) \cap \mathbb{Z}^{r} \neq \emptyset$.
 We define $m L R$-consistent triple (I, J, K) of subsets of $[1, \ldots, \ell k]$ to be the LRconsistant triples, such that $|I \cap[\ell(j-1)+1, \ldots, \ell j]|=|K \cap[\ell(j-1), \ldots, \ell j]|$ for every $j=1, \ldots, k$.

 Theorem 5 (Kronecker positivity criterion, [4])
 Suppose that $g(\lambda, \mu, \nu)>0$ and let $\ell=\min \{\ell(\mu), \ell(\nu)\}$ Then there exist nonneg ative integers $\left\{\alpha_{j}^{2}\right\}_{i \in[k], j \in[\emptyset]}$ satisfying

 $$
 \begin{aligned}
 \sum_{j} \alpha_{j}^{i} & =\lambda_{i}, \\
 \alpha_{j}^{i} & \geq \alpha_{j+1}^{i}, \\
 \sum_{j \in D(I)} \alpha_{j}^{i} & \leq \min \left\{\sum_{j \in J} \mu_{j}, \sum_{j \in J} \nu_{j}\right\},
 \end{aligned}
 $$

 $$
 \text { for } i \in[k] \text {; }
 $$

 $$
 \text { for } j \in[\ell-1], i \in[k] ;
 $$

 ## Corollary 5.1

 Suppose that $g(\lambda, \mu, \nu)>0$ and $\ell(\mu)=2, k=\ell(\lambda)$. Then there exist nonnegative integers $y_{i} \in\left[0,\left[\lambda_{i} / 2\right]\right]$ for $i \in[k]$, such that

 $$
 \sum_{i \in A \cup C} \lambda_{i}+\sum_{i \in B} y_{i}-\sum_{i \in C} y_{i} \leq \min \left\{\sum_{j \in J} \mu_{j}, \sum_{j \in J} \nu_{j}\right\}
 $$

 for all triples of mutually disjoint sets $A \sqcup B \sqcup C \subset[k]$ and $J=\{1, \ldots, r, r+2, \ldots, r+b+1\}$ or $J=\{1, \ldots, r+b-1, r+2 b\}$, where $r=2|A|+|C|$ and $b=|B|$.

