Saturated Newton polytope

A multivariate polynomial with nonnegative coefficients $f(x_1,\ldots,x_k) = \sum_{\alpha} f(x_1,\ldots,x_k)$ has a saturated Newton polytope (SNP) if the set of points $M_k(f) := \{(\alpha_1, \cdots, \beta_k)\}$ $c_{\alpha} > 0$ coincides with its convex hull in \mathbb{Z}^k .

The Kronecker product

The Kronecker coefficients of S_n , denoted by $g(\lambda, \mu, \nu)$, give the multiplicities of one irreducible Specht module in the tensor product of the other two, namely $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu} = \bigoplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\oplus g(\lambda, \mu, \nu)}.$

The *Kronecker product* * of symmetric functions is defined on the Schur basis as

$$s_{\lambda} * s_{\mu} := \sum_{\nu} g(\lambda, \mu, \nu) s_{\nu},$$

and extended by linearity. It is equivalent to the inner product of S_n characters under the characteristic map.

SNP for the Kronecker product

Conjecture 1 (Monical-Tokcan-Yong, 2019, [3]) The Kronecker product $s_{\lambda} * s_{\mu}$ has a saturated Newton polytope.

We prove this conjecture for partitions of lengths 2 and 3:

Theorem 1 (Panova-Zhao, 2023, [4])

Let $\lambda, \mu \vdash n$ with $\ell(\lambda) \leq 2, \ell(\mu) \leq 3$, and $\mu_1 \geq \lambda_1$ then $s_\lambda * s_\mu(x_1, \ldots, x_k)$ has a saturated Newton polytope for every k.

Proof idea: The Kronecker product in these cases contains a term s_{ν} with ν dominating all other partitions appearing. Thus the Newton polytope consists of all integer points (a_1, \ldots, a_k) , such that $sort(a_1, \ldots, a_k) \preceq \nu$ in the dominance order.

Example

However, we cannot expect to have unique maximal terms in general: $s_{(6,6)} * s_{(8,2,1,1)} = s_{(4,4,2,1,1)} + s_{(4,4,3,1)} + s_{(5,3,1,1,1,1)} + s_{(5,3,2,1,1)} + s_{(5,3,2,2)} + s_{(5,3,3,1)} + s_{(5,3,3,1)} + s_{(5,3,2,1,1)} + s_{(5,$ $2s_{(5,4,1,1,1)} + 3s_{(5,4,2,1)} + s_{(5,4,3)} + s_{(5,5,1,1)} + 2s_{(5,5,2)} + s_{(6,2,2,1,1)} + 2s_{(6,3,1,1,1)} + 3s_{(6,3,2,1)} + 3s_{($ $s_{(6,3,3)} + 4s_{(6,4,1,1)} + 2s_{(6,4,2)} + 2s_{(6,5,1)} + s_{(7,2,1,1,1)} + s_{(7,2,2,1)} + 2s_{(7,3,1,1)} + 2s_{(7,3,2)} + 2s_{(7,4,1)} + 2s_{(7,4,1)}$ $s_{(7,5)} + s_{(8,2,1,1)} + s_{(8,3,1)}.$ In this product, (7, 5) and (8, 3, 1) are incomparable maximal.

The first case when there is no such dominant partition is covered in the following.

Theorem 2 (Two and three-row partitions, [4]) Let $\lambda, \mu \vdash n$ with $\ell(\lambda) \leq 2$ and $\ell(\mu) \leq 3$. Then $s_{\lambda} * s_{\mu}(x_1, x_2, x_3)$ has a saturated Newton polytope.

The limit case

Theorem 3 (The limit case, [4]) Let λ, μ be partitions of the same size and $k \in \mathbb{N}$. Then the set of points $\bigcup_{j=1}^{1} M_k(s_{p\lambda} * s_{p\mu})$

is a convex subset of \mathbb{Q}^k .

Conjecture 1 holds in the "limit".

The Newton polytope of the Kronecker product

Greta Panova and Chenchen Zhao

Department of Mathematics, University of Southern California, Los Angeles, CA 90089

Monomial expansion via multi-LR coefficients

$$\begin{array}{ll} c_{\alpha} c_{\alpha} x^{\alpha} & \text{The multi-LR coefficients can be defined recursive} \\ , \alpha_k) : & c_{\nu^1 \nu^2 \cdots}^{\lambda} := \langle s_{\lambda}, s_{\nu^1} s_{\nu^2} \cdots \rangle = \sum \end{array}$$

 $P(\mu; \mathbf{a}) := \{ (\alpha^1, \alpha^2, \cdots, \alpha^k) \in \mathbb{Z}_{\geq 0}^{\ell(\mu)k} : c^{\mu}_{\alpha^1 \alpha^2 \cdots} > 0 \text{ and } |\alpha^i| = a_i \text{ for } i = 1, \dots, k \}.$ Then, the set of monomial degrees $\mathbf{a} = (a_1, \ldots, a_k)$ appearing in $s_\lambda * s_\mu$ is given as

 $M_k(s_{\lambda} * s_{\mu}) = \{ \mathbf{a} \in \mathbb{Z}_{>0}^k : P(\lambda; \mathbf{a}) \cap P(\mu; \mathbf{a}) \neq \emptyset \}.$

Horn inequalities for multi-LR's

Theorem 3 (van Leeuwen, [5])

Let λ, μ, ν be partitions such that $|\lambda| = |\mu| + |\lambda|$ $\mu \diamond \nu$ denotes the skew shape $(\nu_1^{\ell(\mu)} + \mu, \nu)/\nu$.

For a subset $I = \{i_1 < i_2 < \cdots < i_s\} \subset [r]$, let $\rho(I)$ denote the partition $\rho(I) :=$ $(i_s - s, \ldots, i_2 - 2, i_1 - 1)$. A triple of subsets $I, J, K \subset [r]$ is *LR-consistent* if they have the same cardinality s and $c_{\rho(J),\rho(K)}^{\rho(I)} = 1$.

Theorem 4 (Zelevinsky, Klyachko, Knutson-Tao, [6, 1, 2]) Let $\lambda, \mu, \nu \in \mathbb{N}^r$ with weakly decreasing component. Then $c_{\mu,\nu}^{\lambda} > 0$ if and only if $|\lambda| = |\mu| + |\nu|$ and $\sum_{i \in I} \lambda_i \leq \sum_{i \in J} \mu_i + \sum_{k \in K} \nu_k$ for all *LR*-consistent triples $I, J, K \subset [r].$

Corollary 4.1 Let $\ell(\mu) = \ell$ and $\mathbf{a} = (a_1, \dots, a_k)$. Then $P(\mu; \mathbf{a}) = \{ (\alpha^1, \dots, \alpha^k) \in \mathbb{Z}_{\geq 0}^{\ell k} :$ $\sum \alpha_j^i = a_i,$ for $i \in [k]$; $\alpha_{j}^{i} \geq \alpha_{j+1}^{i}, \quad \text{for } j \in [\ell-1], \ i \in [k];$ $\sum (n(k-i) + \alpha_j^i) \leq \sum \mu_j + \sum n(k-d)\},$ $(i,j) \in D(I)$ $(d,r) \in D(K)$ $j \in J$ where the last inequalities hold for all LR-consistent triples $I, J, K \in [\ell k]$.

Main References

- [1] Alexander A Klyachko. Stable bundles, representation theory and hermitian operators. *Selecta* Mathematica, New Series, 4(3):419–445, 1998.
- [2] Allen Knutson and Terence Tao. The honeycomb model of $GL_n(\mathbb{C})$ tensor products I: Proof of the saturation conjecture. Journal of the American Mathematical Society, 12(4):1055–1090, 1999.
- [3] Cara Monical, Neriman Tokcan, and Alexander Yong. Newton polytopes in algebraic combinatorics. Selecta Mathematica, 25(5):66, 2019.
- [4] Greta Panova and Chenchen Zhao. The newton polytope of the kronecker product. *arXiv* preprint 2311.10276, 2023.
- [5] Marc AA van Leeuwen. The littlewood-richardson rule, and related combinatorics. Interaction of combinatorics and representation theory, 11:95–145, 2001.
- [6] Andrei Zelevinsky. Littlewood-richardson semigroups. arXiv preprint math/9704228, 1997.

ively as
$$\sum_{\mu^1,\dots} c^{\lambda}_{\nu^1 au^1} c^{ au^1}_{
u^2 au^2} \cdots$$

 $c^\lambda_{lpha^1lpha^2...}c^\mu_{lpha^1lpha^2...}$

$$|
u|$$
. Then $c^\lambda_{\mu,
u}=\langle s_\lambda,s_{\mu\diamond
u}
angle$, where

$\mathcal{Q}(\lambda,\mu,\mathbf{a}) := \left\{ \left(x,y,z \right) \in \mathbb{R} \right\}$

Analyzing $Q(\lambda, \mu, \mathbf{c})$, [4]

- $\mathcal{Q}(\lambda, \mu, \mathsf{a}) \cap \mathbb{Z}^3 \neq \emptyset.$

Kronecker positivity implications

If $g(\lambda, \mu, \nu) > 0$, then s_{ν} appears in $s_{\lambda} * s_{\mu}$, and so its leading monomial m_{ν} also appears, so $\mathcal{Q}(\lambda, \mu, \nu) \cap \mathbb{Z}^r \neq \emptyset$.

every j = 1, ..., k.

The polytope for k = 3

Let $\ell(\lambda) = 2$ and $\ell(\mu) = 3$. Consider $\mathbf{a} = (a_1, a_2, a_3)$. Let $x := \alpha_1^1, y := \alpha_1^2, z := \alpha_1^3$. When $\mu_1 < \lambda_1, P(\lambda; \mathbf{a}) \cap P(\mu; \mathbf{a}) \neq \emptyset$ is equivalent to $\mathcal{Q}(\lambda, \mu, \mathbf{a}) \cap \mathbb{Z}^3 \neq \emptyset$.

$$\mathbb{R}^{3} \text{ s.t. } a_{1} - \min(\mu_{2}, \lambda_{2}, \frac{a_{1}}{2}) \leq x \leq \min(a_{1}, \mu_{1})$$

$$a_{2} - \min(\mu_{2}, \lambda_{2}, \frac{a_{2}}{2}) \leq y \leq \min(a_{2}, \mu_{1})$$

$$a_{3} - \min(\mu_{2}, \lambda_{2}, \frac{a_{3}}{2}) \leq z \leq \min(a_{3}, \mu_{1})$$

$$\max(\mu_{3}, a_{1} + a_{2} - \mu_{1}) \leq x + y$$

$$\max(\mu_{3}, a_{1} + a_{3} - \mu_{1}) \leq x + z$$

$$\max(\mu_{3}, a_{2} + a_{3} - \mu_{1}) \leq y + z$$

$$\lambda_{1} \leq x + y + z$$

$$\max(\mu_{2}, \lambda_{2}) - a_{1} \leq -x + y + z \leq \mu_{1} + \mu_{2} - a_{1}$$

$$\max(\mu_{2}, \lambda_{2}) - a_{2} \leq x - y + z \leq \mu_{1} + \mu_{2} - a_{2}$$

$$\max(\mu_{2}, \lambda_{2}) - a_{3} \leq x + y - z \leq \mu_{1} + \mu_{2} - a_{3}$$

• Suppose that $\mathcal{Q}(\lambda, \mu, \mathbf{a}^i) \neq \emptyset$ for some vectors $\mathbf{a}^i, i = 1, \dots, 4$ and $\mathbf{c} = \sum_i t_i \mathbf{a}^i$ for some $t_i \in [0, 1]$ with $t_1 + t_2 + t_3 + t_4 = 1$. Then $\mathcal{Q}(\lambda, \mu, \mathbf{c}) \neq \emptyset$. • [4, Theorem 2] If $\mathcal{Q}(\lambda, \mu, \mathbf{a}) \neq \emptyset$ then it has an integer point, i.e.

Figure 1. $Q(\lambda, \mu; \mathbf{a})$ where $\lambda = (7, 6, 5), \mu = (13, 5)$ and $\mathbf{a} = (9, 6, 3)$.

We define *mLR-consistent* triple (I, J, K) of subsets of $[1, \ldots, \ell k]$ to be the LRconsistant triples, such that $|I \cap [\ell(j-1)+1,\ldots,\ell j]| = |K \cap [\ell(j-1),\ldots,\ell j]|$ for

Suppose that $g(\lambda, \mu, \nu) > 0$ and let $\ell = \min\{\ell(\mu), \ell(\nu)\}$ Then there exist nonneg-

for
$$i \in [k]$$
;
for $j \in [\ell - 1], i \in [k]$;
for every mLR-consistent (I, J, K) .

$$,\sum_{j\in J}\nu_j\},$$

Suppose that $g(\lambda, \mu, \nu) > 0$ and $\ell(\mu) = 2$, $k = \ell(\lambda)$. Then there exist nonnegative $\sum_{i \in A \cup C} \lambda_i + \sum_{i \in B} y_i - \sum_{i \in C} y_i \le \min\{\sum_{j \in J} \mu_j, \sum_{j \in J} \nu_j\}$ for all triples of mutually disjoint sets $A \sqcup B \sqcup C \subset [k]$ and $J = \{1, \ldots, r, r+2, \ldots, r+b+1\}$ or $J = \{1, \dots, r+b-1, r+2b\}$, where r = 2|A| + |C| and b = |B|.