

## The Problem: Existence of Locally Invariant Vectors

For which irreducible representations V of a finite group G, and which elements  $g \in G$  does there exist a non-zero vector  $v \in V$  such that  $g \cdot v = v$ ? The answer depends on g only through its conjugacy class.

### Symmetric Groups

For  $G = S_n$ , let  $V_{\lambda}$  be the irreducible representation corresponding to the partition  $\lambda$  of *n*. Let  $w_{\mu}$  denote a permutation with cycle type  $\mu$ .

**Restatement.** For which partitions  $\lambda$  and  $\mu$  does there exist a non-zero vector  $v \in V_{\lambda}$  such that  $w_{\mu} \cdot v = v$ ?

#### Main Theorem

The permutation  $w_{\mu}$  admits a non-zero invariant vector in  $V_{\lambda}$  except when

**1.**  $\lambda = (1^n)$ ,  $\mu$  is any partition of n for which  $w_\mu \notin A_n$ ,

- **2.**  $\lambda = (n 1, 1), \mu = (n), n \ge 2,$
- 3.  $\lambda = (2, 1^{n-2}), \mu = (n), n \ge 3$  is odd,
- 4.  $\lambda = (2^2, 1^{n-4}), \mu = (n-2, 2), n \ge 5$  is odd,
- 5.  $\lambda = (2, 2), \mu = (3, 1),$
- 6.  $\lambda = (2^3), \mu = (3, 2, 1),$
- 7.  $\lambda = (2^4), \mu = (5, 3),$
- 8.  $\lambda = (4, 4), \mu = (5, 3),$
- 9.  $\lambda = (2^5), \mu = (5, 3, 2).$

#### **Alternating Groups**

The main theorem was extended to alternating groups in [6]. For every irreducible representation V of  $A_n$ , and every  $w \in A_n$ , there exists a non-zero vector in V that is invariant under w unless one of the following holds:

- **1.**  $V = V_{(2,1)}^{\pm}$  and w is a 3-cycle,
- **2.**  $V = V_{(2,2)}^{\pm}$  and *w* has cycle type (3, 1),
- 3.  $V = V_{(4,4)}$  and *w* has cycle type (5,3),
- 4.  $V = V_{(n-1,1)}$  and w is an n-cycle, where n > 3 is odd.

 $V_{\lambda}^{\pm}$  are the irreducible constitutents of the restriction of  $V_{\lambda}$  to  $A_n$  when  $\lambda$  is selfconjugate.

#### **Cyclic Characters**

A cyclic character of a finite group G is a character that is induced from a cyclic subgroup of G. The study of cyclic characters goes back to Artin and Brauer, and arose in the context of analytic continuation of Artin L-functions.

By Frobenius reciprocity if

$$V_{\lambda}^{w_{\mu}} := \{ v \in V_{\lambda} \mid w_{\mu}v = v \},$$

then

$$\dim V_{\lambda}^{w_{\mu}} = \langle \operatorname{Ind}_{\langle w_{\mu} \rangle}^{S_{n}} 1, V_{\lambda} \rangle$$

Our Main Theorem gives necessary and sufficient conditions for the positivity of  $[\operatorname{Ind}_{\langle w_{\mu}\rangle}^{S_n} 1, V_{\lambda}].$ 

# **Locally Invariant Vectors in Representations of Symmetric Groups**

Amrutha P<sup>1</sup> Amritanshu Prasad <sup>2,3</sup> Velmurugan S<sup>2,3</sup>

<sup>1</sup>Chennai Mathematical Institute

<sup>2</sup>The Institute of Mathematical Sciences, Chennai

# **Connection to Global Conjugacy Classes**

The conjugacy class of an element  $g \in G$  is said to be a global conjugacy class if the corresponding permutation representation  $\operatorname{Ind}_{Z_G(q)}^G 1$  contains every irreducible representation of G.

- Heide and Zalessky [1] conjectured: if every irreducible representation of a finite group occurs in its adjoint representation, then it admits a global conjugacy class. They proved the conjecture for alternating groups and sporadic simple groups.
- Sheila Sundaram [10] characterized all global conjugacy classes for S<sub>n</sub>: for  $n \neq 4, 8, \mu \vdash n, w_{\mu}$  lies in a global conjugacy class of  $S_n$  if and only if  $\mu$  has at least two parts and its parts are odd and distinct. Global conjugacy classes exist for n = 6 and  $n \ge 8$ .
- Since  $\langle w_{\mu} \rangle \subset Z_G(w_{\mu})$ , if the class of  $w_{\mu}$  is global, then  $V_{\lambda}^{w_{\mu}} \neq 0$  for every  $\lambda \vdash n$ .

# **The Immersion Poset**

Prasad and Ragunathan [8] introduced a partial order on automorphic representations called *immersion*. Adapted to finite dimensional representations of groups:

Say that a representation V of G is said to be *immersed* in a representation W of G if, for every  $g \in G$  and every  $\lambda \in \mathbb{C}$ , the mupltiplicity of  $\lambda$  as an eigenvalue of g in V is less than or equal to the multiplicity of  $\lambda$  as an eigenvalue of g in W. We write  $V \preccurlyeq W$ .

Our Main Theorem implies the following result:

Given a partition  $\lambda \vdash n$ ,  $V_{(n)} \preccurlyeq V_{\lambda}$  if and only if  $\lambda$  is not one of

**1.** (1<sup>n</sup>),

- **2.** (n-1,1) for  $n \ge 2$ ,
- **3.**  $(2, 1^{n-2})$  when  $n \ge 3$  is odd,
- 4.  $(2^2, 1^{n-4})$ , when  $n \ge 5$  is odd,
- 5. (2, 2),  $(2^3)$ ,  $(2^4)$ ,  $(4^2)$  and  $(2^5)$ .

### Ingredients of the Proof

- Let  $\chi : \langle w_{\mu} \rangle \to \mathbb{C}^*$  be a faithful character. Through the work of Klyachko [3], Kraśkiewicz and Weyman [4], Stembridge [9], and Jöllenbeck and Schocker [2] a combinatorial interpretation of  $[\operatorname{Ind}_{\langle w_{\mu}\rangle}^{S_n}\chi^i,V_{\lambda}]$  as the number of standard Young tableaux of shape  $\lambda$  and multi-major index i is obtained. However, the positivity of this multiplicity is difficult to establish from this interpretation.
- 2. Swanson [11] proved a special case of our main theorem when  $\mu = (n)$ :  $w_{(n)}$ admits a non-zero invariant vector in  $V_{\lambda}$  except in the following cases: **1.**  $\lambda = (n - 1, 1)$
- **2.**  $\lambda = (1^n)$  and *n* is even
- **3.**  $\lambda = (2, 1^{n-2})$  and *n* is odd.
- 3. The Littlewood-Richardson rule:

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda}s_{\lambda},$$

where  $c_{\mu\nu}^{\lambda}$  is the number of semistandard tableaux of shape  $\lambda/\mu$  and content  $\nu$ whose reverse reading word is a lattice permutation.

<sup>3</sup>Homi Bhabha National Institute



# **Strategy of the Proof**

Following a strategy similar to Sundaram, we deduce our main result from Swanson's result by repeated use of the Littlewood-Richardson rule.

Consider the Frobenius characteristic  $f_{\mu} = ch_n \operatorname{Ind}_{\langle w_{\mu} \rangle}^{S_n} 1$ . We wish to prove that

$$f_{\mu} \ge s_{\lambda}$$

for all pairs  $(\mu, \lambda)$  barring the exceptions in the Main Theorem. Since the Young subgroup  $S_{\mu}$  contains  $\langle w_{\mu} \rangle$ ,

$$f_{\mu} \ge \prod_{i=1}^{k} f_{(\mu_i)}.$$

But  $f_{\mu_i} \ge s_{\lambda}$  for all partitions  $\lambda \vdash \mu_i$  barring the exceptions in Swanson's theorem. Careful application of the Littlewood-Richardson rule allows us to obtain (\*).

## Persistence Plays a Role

A  $\mu \vdash n$  is called persistent if

$$f_{\mu} \ge s_{\lambda}$$
 for all  $\lambda \vdash n, \ \lambda \neq (1^n).$ 

In our proof we first determine which two-part partitions are persistent using Swanson's theorem and the Littlewood-Richardson rule.

We then obtain the Main Theorem with the help of the following lemma:

**Lemma.** A partition  $\mu = (\mu_1, \ldots, \mu_k) \vdash n$  with  $k \geq 2$  is persistent if the partition  $\tilde{\mu}$ obtained by removing a part  $\mu_i$  from  $\mu$  is persistent and  $n - \mu_i \ge 4$ .

## **Open Questions**

- . Classify the global conjugacy classes of  $A_n$ . We have used our results to construct plethora of new global conjugacy classes for  $A_n$  [6].
- 2. Determine the set of triples  $(\lambda, \mu, i)$  such that

$$\langle \operatorname{Ind}_{\langle m_{\mu} \rangle}^{S_n} \chi^i, V_{\lambda} \rangle > 0.$$

3. Find an algorithm to construct a standard tableau of shape  $\lambda$  and major index divisible by n for every partition  $\lambda \vdash n$  barring the exceptions in Swanson's result.

### References

- [1] G. Heide and A. E. Zalesski. Passman's problem on adjoint representations. In *Groups, rings and algebras*, volume 420 of Contemp. Math., pages 163–176. Amer. Math. Soc., Providence, RI, 2006.
- [2] A. Jöllenbeck and M. Schocker. Cyclic characters of symmetric groups. J. Algebraic Combin., 12(2):155–161, 2000.
- [3] A. A. Klyachko. Lie elements in a tensor algebra. *Sibirsk. Mat. Ž.*, 15:1296–1304, 1430, 1974.
- [4] W. Kraśkiewicz and J. Weyman. Algebra of coinvariants and the action of a Coxeter element. Bayreuth. Math. Schr., (63):265-284, 2001.
- Amrutha P, A. Prasad, and Velmurugan S. On the existence of elementwise invariant vectors in representations of symmetric groups, 2023. arXiv:2308.08146.
- Amrutha P, Amritanshu Prasad, and Velmurugan S. Cyclic characters of alternating groups, 2023. arXiv:2403.05109 [6] A. Prasad. Representation Theory: A Combinatorial Viewpoint, volume 147 of Cambridge Studies in Advanced
- Mathematics. Cambridge University Press, Delhi, 2015. D. Prasad and R. Raghunathan. Relations between cusp forms sharing Hecke eigenvalues. Represent. Theory, 26:1063-1079, 2022.
- [9] J. R. Stembridge. On the eigenvalues of representations of reflection groups and wreath products. Pacific J. Math., 140(2):353-396, 1989.
- [10] S. Sundaram. On conjugacy classes of  $S_n$  containing all irreducibles. *Israel J. Math.*, 225(1):321–342, 2018.
- [11] J. P. Swanson. On the existence of tableaux with given modular major index. Algebr. Comb., 1(1):3–21, 2018.
- [12] N. Yang and A. M. Staroletov. The minimal polynomials of powers of cycles in the ordinary representations of symmetric and alternating groups. J. Algebra Appl., 20(11):Paper No. 2150209, 18, 2021.