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The Problem: Existence of Locally Invariant Vectors

For which irreducible representations V of a finite group G, and which elements

g ∈ G does there exist a non-zero vector v ∈ V such that g · v = v?

The answer depends on g only through its conjugacy class.

Symmetric Groups

For G = Sn, let Vλ be the irreducible representation corresponding to the partition

λ of n. Let wµ denote a permutation with cycle type µ.

Restatement. For which partitions λ and µ does there exist a non-zero vector

v ∈ Vλ such that wµ · v = v?

Main Theorem

The permutation wµ admits a non-zero invariant vector in Vλ except when

1. λ = (1n), µ is any partition of n for which wµ /∈ An,

2. λ = (n − 1, 1), µ = (n), n ≥ 2,
3. λ = (2, 1n−2), µ = (n), n ≥ 3 is odd,
4. λ = (22, 1n−4), µ = (n − 2, 2), n ≥ 5 is odd,
5. λ = (2, 2), µ = (3, 1),
6. λ = (23), µ = (3, 2, 1),
7. λ = (24), µ = (5, 3),
8. λ = (4, 4), µ = (5, 3),
9. λ = (25), µ = (5, 3, 2).

Alternating Groups

The main theorem was extended to alternating groups in [6]. For every irreducible

representation V of An, and every w ∈ An, there exists a non-zero vector in V that is

invariant under w unless one of the following holds:

1. V = V ±
(2,1) and w is a 3-cycle,

2. V = V ±
(2,2) and w has cycle type (3, 1),

3. V = V(4,4) and w has cycle type (5, 3),
4. V = V(n−1,1) and w is an n-cycle, where n > 3 is odd.

V ±
λ are the irreducible constitutents of the restriction of Vλ to An when λ is self-

conjugate.

Cyclic Characters

A cyclic character of a finite group G is a character that is induced from a cyclic

subgroup of G. The study of cyclic characters goes back to Artin and Brauer, and

arose in the context of analytic continuation of Artin L-functions.

By Frobenius reciprocity if

V
wµ

λ := {v ∈ Vλ | wµv = v},

then

dim V
wµ

λ = 〈IndSn
〈wµ〉1, Vλ〉

Our Main Theorem gives necessary and sufficient conditions for the positivity of

[IndSn
〈wµ〉1, Vλ].

Connection to Global Conjugacy Classes

The conjugacy class of an element g ∈ G is said to be a global conjugacy class if the

corresponding permutation representation IndG
ZG(g) 1 contains every irreducible

representation of G.

Heide and Zalessky [1] conjectured: if every irreducible representation of a finite

group occurs in its adjoint representation, then it admits a global conjugacy class.

They proved the conjecture for alternating groups and sporadic simple groups.

Sheila Sundaram [10] characterized all global conjugacy classes for Sn: for

n 6= 4, 8, µ ` n, wµ lies in a global conjugacy class of Sn if and only if µ has at least

two parts and its parts are odd and distinct. Global conjugacy classes exist for

n = 6 and n ≥ 8.

Since 〈wµ〉 ⊂ ZG(wµ), if the class of wµ is global, then V
wµ

λ 6= 0 for every λ ` n.

The Immersion Poset

Prasad and Ragunathan [8] introduced a partial order on automorphic representations

called immersion. Adapted to finite dimensional representations of groups:

Say that a representation V of G is said to be immersed in a representation W of G if,

for every g ∈ G and every λ ∈ C, the mupltiplicity of λ as an eigenvalue of g in V is

less than or equal to the multiplicity of λ as an eigenvalue of g in W .

We write V 4 W .

Our Main Theorem implies the following result:

Given a partition λ ` n, V(n) 4 Vλ if and only if λ is not one of

1. (1n),
2. (n − 1, 1) for n ≥ 2,
3. (2, 1n−2) when n ≥ 3 is odd,
4. (22, 1n−4), when n ≥ 5 is odd,
5. (2, 2), (23), (24), (42) and (25).

Ingredients of the Proof

1. Let χ : 〈wµ〉 → C∗ be a faithful character. Through the work of Klyachko [3],

Kraśkiewicz andWeyman [4], Stembridge [9], and Jöllenbeck and Schocker [2] a

combinatorial interpretation of [IndSn
〈wµ〉 χi, Vλ] as the number of standard Young

tableaux of shape λ and multi-major index i is obtained. However, the positivity

of this multiplicity is difficult to establish from this interpretation.

2. Swanson [11] proved a special case of our main theorem when µ = (n): w(n)

admits a non-zero invariant vector in Vλ except in the following cases:

1. λ = (n − 1, 1)

2. λ = (1n) and n is even

3. λ = (2, 1n−2) and n is odd.

3. The Littlewood-Richardson rule:

sµsν =
∑

λ

cλ
µνsλ,

where cλ
µν is the number of semistandard tableaux of shape λ/µ and content ν

whose reverse reading word is a lattice permutation.

Strategy of the Proof

Following a strategy similar to Sundaram, we deduce our main result from Swanson’s

result by repeated use of the Littlewood-Richardson rule.

Consider the Frobenius characteristic fµ = chn IndSn
〈wµ〉 1. Wewish to prove that

fµ ≥ sλ (*)

for all pairs (µ, λ) barring the exceptions in the Main Theorem.

Since the Young subgroup Sµ contains 〈wµ〉,

fµ ≥
k∏

i=1
f(µi).

But fµi ≥ sλ for all partitions λ ` µi barring the exceptions in Swanson’s theorem.

Careful application of the Littlewood-Richardson rule allows us to obtain (*).

Persistence Plays a Role

A µ ` n is called persistent if

fµ ≥ sλ for all λ ` n, λ 6= (1n).

In our proof we first determine which two-part partitions are persistent using

Swanson’s theorem and the Littlewood-Richardson rule.

We then obtain the Main Theorem with the help of the following lemma:

Lemma. A partition µ = (µ1, . . . , µk) ` n with k ≥ 2 is persistent if the partition µ̃
obtained by removing a part µi from µ is persistent and n − µi ≥ 4.

Open Questions

1. Classify the global conjugacy classes of An.

We have used our results to construct plethora of new global conjugacy classes

for An [6].

2. Determine the set of triples (λ, µ, i) such that

〈IndSn
〈wµ〉χ

i, Vλ〉 > 0.

3. Find an algorithm to construct a standard tableau of shape λ and major index

divisible by n for every partition λ ` n barring the exceptions in Swanson’s result.
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