Quasisymmetric expansion of Hall-Littlewood symmetric functions

Young tableaux and permutation statistics

Let $[n] = \{1, \ldots, n\}, \mathbb{P} = \{1, 2, 3, \ldots\}$ and $\mathbb{P}^{\pm} = -\mathbb{P} \cup \mathbb{P}$ be the totally ordered set $-1 < 1 < -2 < 2 < \ldots$ The sets of **semistandard**, **marked** and **standard** Young tableaux of shape λ/μ are denoted $SSYT(\lambda/\mu)$, $SYT^{\pm}(\lambda/\mu)$ and $SYT(\lambda/\mu)$.

		3	3	3	12			-4	4	4	18			
	1	5	10				-3	-9	9					2
1	2			-		2	-3			-			1	3
6						-9		-					8	
12						18							10	

The descent set of a standard Young tableau T is $Des(T) = \{1 \le i \le n-1 \mid i \text{ is in a}\}$ strictly higher row than i+1; its **peak set** is $Peak(T) = \{2 \le i \le n-1 \mid i \in Des(T)\}$ and $i - 1 \notin Des(T)$. For marked tableaux, neg(T) is the number of negative entries. Denote the descent set and peak set of a permutation π by $Des(\pi)$ and $Peak(\pi)$.

Hall-Littlewood S-symmetric functions

Let $X = \{x_1, x_2, x_3, \ldots\}$ and Λ the ring of symmetric functions. Fix a parameter $t \in \mathbb{C}$ and define $q_n(X;t) \in \Lambda$ by $q_0(X;t) = 1$, $q_{\text{negative}}(X;t) = 0$ and

$$q_n(X;t) = (1-t)\sum_i x_i^n \prod_{j \neq i} \frac{x_i - tx_j}{x_i - x_j} \qquad \text{for all } n >$$

The $(q_n(X;t))_n$ generate a subalgebra Λ_t of Λ which is proper when t is a root of unity.

Def (Hall-Littlewood S-sym. functions). $S_{\lambda/\mu}(X;t) := \det (q_{\lambda_i - \mu_j - i + j}(X;t))_{i,j}$. As such, $S_{\lambda/\mu}(X;0) = s_{\lambda/\mu}(X)$ and $S_{\lambda/\mu}(X;-1)$ is a variant of Schur's Q-function.

Def (θ_t homomorphism). Define the \mathbb{C} -algebra morphism $\theta_t : \Lambda \longrightarrow \Lambda_t$ by $\theta_t(h_n)(X) = q_n(X;t)$. As a consequence, $\theta_t(s_{\lambda/\mu})(X) = S_{\lambda/\mu}(X;t)$.

P-partitions and q-deformed generating functions

A labelled weighted poset is a triple $P = ([n], <_P, \epsilon)$ where $([n], <_P)$ is a labelled poset and $\epsilon : [n] \longrightarrow \mathbb{P}$ is a map (the weight function).

3,
$$\epsilon(3) = 2 \xrightarrow{2} \epsilon(2) = 5 \xleftarrow{1} \epsilon(1) = 1 \xrightarrow{2} 4, \epsilon(4)$$

$$\epsilon(5) = 2 \xrightarrow{2} \epsilon(5) = 2 \xrightarrow{2} \epsilon(1) = 1 \xrightarrow{2} 4, \epsilon(4)$$

The set $\mathcal{L}_{\mathbb{P}^{\pm}}(P)$ of **enriched** *P*-**partitions** is the set of maps $f:[n] \longrightarrow \mathbb{P}^{\pm}$ that satisfy:

(i) If $i <_P j$ and i < j, then f(i) < f(j) or $f(i) = f(j) \in \mathbb{P}$.

(ii) If $i <_P j$ and i > j, then f(i) < f(j) or $f(i) = f(j) \in -\mathbb{P}$.

Let $X = \{x_1, x_2, x_3, \ldots\}$ and $q \in \mathbb{C}$ (complex numbers). The q-generating function for enriched P-partitions on the weighted poset $P = ([n], <_P, \epsilon)$ is

$$\Gamma^{(q)}([n], <_P, \epsilon) = \sum_{f \in \mathcal{L}_{\mathbb{P}^{\pm}}(P)} \prod_{1 \le i \le n} q^{[f(i) < 0]} x_{|f(i)|}^{\epsilon(i)}$$

This definition covers the cases of Gessel (q = 0) and Stembridge (q = 1).

École Polytechnique

Darij Grinberg^{*} Ekaterina A. Vassilieva^{**} Drexel University FPSAC, July 22–26, 2024, Ruhr-Universität, Bochum, Germany

Deformed fundamental quasisymmetric functions

Given a permutation $\pi = \pi_1 \dots \pi_n$ in the symmetric group \mathfrak{S}_n on [n], we let $P_{\pi} =$ $([n], <_{\pi}, 1^n)$ be the labelled weighted poset on the set [n], where the order relation $<_{\pi}$ is such that $\pi_i <_{\pi} \pi_j$ if and only if i < j, and where all the weights are equal to 1.

 $\pi_1 \longrightarrow \pi_2 \longrightarrow \cdots \cdots$

Def (*q*-Fundamental quasisymmetric functions). Let π be a permutation in \mathfrak{S}_n and $q \in \mathbb{C}$. Define the *q*-fundamental quasisymmetric function indexed by π as

$$L_{\pi}^{(q)} = \Gamma^{(q)}([n], <_{\pi}, 1^{n}) = \sum_{\substack{i_{1} \leq \dots \leq i_{n} \\ j \in \operatorname{Peak}(\pi) \Rightarrow i_{j} - 1 < i_{j+1}}} q^{|\{j \in \operatorname{Des}(\pi)|i_{j} = i_{j+1}\}|} (q+1)^{|\{i_{1}, \dots, i_{n}\}|} x_{i_{1}} \dots x_{i_{n}}.$$

 $L_{\pi}^{(q)}$ depends only on $\text{Des}(\pi)$ and may be indexed as $(L_{n,I}^{(q)})_{I \subseteq [n-1], n > 0}$. $L_{\pi}^{(q)}$ interpolates between fundamental (q = 0) and peak (q = 1) quasisymmetric functions.

Prop. $(L_{n,I}^{(q)})_{n>0,I\subset[n-1]}$ is a basis of QSym if and only if $q \in \mathbb{C}$ is not a root of unity and $(L_{n,I}^q)_{n\geq 0,I\subseteq p[n-1]}$ is a basis of a proper subalgebra \mathcal{P}^p when -q is a primitive (*p*+1)-th root of unity.

The q-generating functions over skew diagrams

Let $n \in \mathbb{P}$ and λ and μ be two partitions such that λ/μ is a skew shape and $|\lambda| - |\mu| = n$. Label the skew Young diagram of shape λ/μ with the successive integers of [n] from left to right and bottom to top. Define the partial order $\langle \lambda/\mu \rangle$ on [n] as $i \langle \lambda/\mu \rangle j$ if and only if *i* lies northwest of *j* and denote the labelled poset $P_{\lambda/\mu} = ([n], <_{\lambda/\mu})$.

Consequently, the enriched $P_{\lambda/\mu}$ -partitions are precisely the marked semistandard Young tableaux of shape λ/μ , i.e. $\mathcal{L}_{\mathbb{P}^{\pm}}(P_{\lambda/\mu}) = SSYT^{\pm}(\lambda/\mu)$.

Thm. Let $n \in \mathbb{P}$ and λ/μ such that $|\lambda| - |\mu| = n$. The q-deformed generating function of $P_{\lambda/\mu}$ is exactly the Hall-Littlewood S-symmetric function with parameter t=-q

 $S_{\lambda/\mu}(X;-q) = \Gamma^{(q)}([n], <_{\lambda/\mu}).$

Proof (sketch). Let $(i R j) \iff (i \le j \text{ but not } i = j \in -\mathbb{P})$. Let $X^{\pm} =$ $\{x_{-1}, x_1, x_{-2}, x_2, \dots\}$ and

$$H_{n}(X^{\pm}) = \sum_{\substack{(i_{1},\dots,i_{n}) \in (\mathbb{P}^{\pm})^{n};\\i_{1} R \cdots R i_{n}}} x_{i_{1}} \cdots x_{i_{n}}, \quad \Gamma^{\pm}([n], <_{P})(X^{\pm}) = \sum_{f \in \mathcal{L}_{\mathbb{P}^{\pm}}([n], <_{P})} \prod_{1 \le i \le n} x_{f(i)}.$$

Use [2] to show that $\Gamma^{\pm}([n], \langle \lambda/\mu) = \det (H_{\lambda_i - \mu_j - i + j})_{i,j \in [k]}$ and prove that the homomorphism $\varpi(x_i) = q^{[i < 0]} x_{|i|}$ for $x_i \in X^{\pm}$ is such that $\varpi(H_n(X^{\pm})) =$ $q_n(X;-q).$

$$= 2$$

$$\cdots \longrightarrow \pi_n$$

Relating Hall-Littlewood and q-fundamentals

 $S_{\lambda/\mu}(X;-q)$

Proof (sketch). Show that $S_{\lambda/\mu}(X;-q) = \sum_{T \in SSYT^{\pm}(\lambda/\mu)} q^{\operatorname{neg}(T)} X^{|T|}$ and group the summands according to the standardisation of their marked tableau.

Cauchy-like formula for Hall-Littlewood functions

Denote $Y = \{y_1, y_2, \ldots, \}$ and $XY = \{x_i y_j\}_{i,j}$. Let π be a permutation. Extend $\Gamma^{(q)}$ to the alphabet XY by considering P_{π} -partitions $(f,g): i \mapsto (f(i),g(i))$ with value in $\mathbb{P} \times \mathbb{P}^{\pm}$. Say that a pair $(i, j) \in \mathbb{P} \times \mathbb{P}^{\pm}$ is negative if and only if j is negative.

$$\Gamma^{(q)}(P_{\pi})(XY) = \sum_{(f,g)\in\mathcal{L}_{\mathbb{P}\times\mathbb{P}^{\pm}}([n],<\pi)} \prod_{1\leq i\leq n} q^{[g(i)<0]} x_{f(i)} y_{|g(i)|}.$$

The q-fundamental indexed by π on the product of indeterminate XY satisfies

$$L_{\pi}^{(q)}(XY) = \Gamma^{(q)}(P_{\pi})(XY) = \sum_{\sigma \circ \tau = \pi} L_{\sigma}^{(0)}(X)L_{\tau}^{(q)}(Y).$$

Prop. Our results directly imply the following Cauchy-like formula (see [4])

 $q_n(XY)$

References

- functions, 1984
- [2] I. Gessel and X. Viennot. Determinants, Paths, and Plane Partitions; 1989. [3] J. Stembridge, Enriched P-partitions, 1997
- [4] I. Macdonald. Symmetric functions and Hall polynomials. 1999.
- [5] D. Grinberg and E. Vassilieva, Weighted posets and the enriched monomial basis of QSym, 2021

^{**} darijgrinberg@gmail.com ^{**} katya@lix.polytechnique.fr

Thm. Let λ/μ be a skew shape. The Hall-Littlewood S-symmetric function with parameter t = -q is related to q-fundamental quasisymmetric functions through

$$) = \sum_{T \in SYT(\lambda/\mu)} L_{\text{Des}(T)}^{(q)}(X).$$

Thm. There is a ring homomorphism Θ_q : QSym $\longrightarrow \mathcal{P}^{(q)}$ such that for any positive integer n and any subset $I \subseteq [n-1]$, $\Theta_q(L_{n,I}^{(0)}) = L_{n,I}^{(q)}$. The restriction of Θ_q to Λ is θ_{-q} and the following ring map diagram is commutative:

$$t) = \sum_{\lambda \vdash n} s_{\lambda}(X) S_{\lambda}(Y;t).$$

[1] I. Gessel, Multipartite P-partitions and inner products of skew Schur

[6] D. Grinberg and E. Vassilieva, A q-deformation of enriched P-partitions, 2022 [7] D. Grinberg and E. Vassilieva, The algebra of extended peaks, 2023