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Abstract

Multiline queues are combinatorial objects coming from probability theory that give formulas for

the q-Whittaker specialization Pλ(X ; q, 0) of the Macdonald polynomials. We define a charge
statistic and an RSK-esque procedure on multiline queues that naturally recovers the Schur

expansion of Pλ(X ; q, 0). We extend these results to generalized multiline queues, which are in

bijection with binary matrices, and obtain a new family of formulas for Pλ(X ; q, 0) in terms of
these objects.

Multiline diagrams are the plethystic analogues of multiline queues that were recently found to

give a formula for the modified Hall–Littlewood polynomials H̃λ(X ; q, 0). We obtain formulas
for the latter through a cocharge statistic and an RSK-esque procedure on multiline diagrams.

Multiline queues and Macdonald polynomials

Fix a partition λ and n ∈ N. A multiline queue of shape (λ, n) is a λ1 × n binary matrix with

row content λ′, representing a configuration of particles (1) and vacancies (0). The set of such
objects is denoted MLQ(λ, n).

A t-multiline queue of shape (λ, n) (denoted t-MLQ(λ, n)) is a configuration of particles together
with a pairing procedure in which particles in consecutive rows are cylindrically paired weakly to

the right. In [1], it is shown that the symmetric Macdonald polynomial is given by

Pλ(x1, x2 . . . , xn, q, t) =
∑

M∈t-MLQ(λ,n)

wtX,q,t(M)

where wtX,q,t is a weight function in parameters xi, q, and t, with xi’s recording the column

content, q recording thewrapping pairings, and t recording the “skipping of balls” in the pairing.
Setting t = 0 restricts t-MLQ(λ, n) to the set MLQ(λ, n), with pairings dictated by the (deter-
ministic) Ferrari–Martin pairing algorithm [2] in which each particle is paired to the first available

one, and particles are labelled according to the pairings.

ForM ∈ MLQ(λ, n), letmr,` be the number ofwrapping pairings of particles labelled ` from row

r to row r − 1. Then the major index ofM is

maj(M) =
∑
r,`

mr,` (`− r + 1).

Denote the non-wrapping multiline queues byMLQ0(λ, n) := {M ∈ MLQ(λ, n) : maj(M) = 0}.

Collapsing on multiline queues

For a permutation σ ∈ Sn, its charge is charge(σ) = maj(rev(σ−1)) =
∑

i/∈Des(σ)(n− i).

For w with partition content µ, its charge is the sum over the charges of its standard subwords.

The cocharge of such a word is cocharge(w) = n(µ)− charge(w).
Example: For w = 3 4 2 2 3 2 2 1 1 5 1 1 3 4 the charge is

charge(w) = charge(4 3 2 5 1) + charge(3 2 1 4) + charge(2 1 3) + charge(2 1) = 1 + 1 + 1 + 0 = 3

Lemma: For a multiline queue M , let cw(M) be the word recording the row labels from top to
bottom of the columns ofM read from left to right. Then maj(M) = charge(cw(M)).

Theorem: The collapsing map is a weight-preserving bijection:

ρ : MLQ(λ, n) −→
⋃
µ≤λ

MLQ0(µ, n)× SSYT(µ′, λ′)

with xMqmaj(N) = xNqcharge(Q) for (N, Q) := ρ(M).

λ = (5,4,2)
maj(M)=4

µ = (4,3,2,2)
maj(N)=0
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The image of the collapsing map ρ(M) is obtained by applying row operators that act as crystal
operators on cw(M).
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Corollary: The expansion of the q-Whittaker polynomials in terms of multiline queues is

Pλ(x1, . . . , xn; q, 0) :=
∑

µ

Kµ′λ′(q)sµ(x1, . . . , xn) =
∑

M∈MLQ(λ,n)
qcharge(cw(M))xM .

Moreover,

Kλµ(q) =
∑

M∈MLQ(µ,λ′)
ρN(M)=M(λ′)

qmaj(M) =
∑

N∈MLQ0(λ,µ′)
qmaj(rot(N)).

Multiline queue RSK

Theorem: mRSK :M2 →
⋃

λ MLQ0(λ) ×MLQ0(λ′) given by mRSK(B) = (ρ↓(B), ρ←(B)) is a
bijection.

B = = ρ←(B)

ρ↓(B) = = ρ↓(ρ←(B))

ρ←

ρ↓

ρ←

ρ↓

Corollary: (Dual Cauchy identity)
∏

i,j≥1
(1 + xiyj) =

∑
λ

sλ(X)sλ′(Y )

Generalized Multiline Queues

The Ferrari-Martin algorithm can be extended to arbitrary binary matrices [3] by treating vacan-

cies as antiparticles which pair weakly to the left. The (anti)particles are labelled in two phases

of the FM procedure. After the pairing process, we denote the set of binary matrices with row

content α and n columns by GMLQ(α, n).

For 1 ≤ r, ` ≤ L, let mr,` (resp. ar,`) be the number of particles (resp. anti-particles) of type ` that

wrap when pairing to the right (resp. left) from row r to row r − 1. Define

majG(B) =
∑

1≤r,`≤L

mr,`(`− r + 1)− ar,`(`− r + 1).

Example: For B =

0 1 1 1
1 0 0 1
0 1 1 0

 ∈ GMLQ((2, 2, 3), 4) we have majG(B) = 1 + 2− 0− 1 = 2.

2 3 3 3

3 3 3 3

3 2 1 3

2 3 3 3
2-3+1

2-2+1

3-3+1

3-2+1
0 3 3 1

3 2 1 3

2 3 3 3

Theorem: Let λ be a partition, n ∈ N, and let α be a composition with α+ = λ′. Then

Pλ(x1, . . . , xn; q, 0) =
∑

B∈GMLQ(α,n)

qmajG(B)xB.

Multiline diagrams and cocharge

Multiline diagrams (denoted MLD(λ, n)) are analogues to multiline queues for nonnegative in-

teger matrices where the pairing process is done strictly to the left.

Themajor index of amultiline diagramD, denoted m̃aj(D), is given by the non-wrapping pairings:

m̃aj(D) = n(λ)−
∑
r,`

mr,`(r − ` + 1), n(λ) =
∑

i

(
λi

2

)
Denote non-wrapping multiline diagrams byMLD0(λ, n) := {D ∈ MLQ(λ, n) : m̃aj(D) = n(λ)}.
Lemma: For a multiline diagram D we have m̃aj(D) = cocharge(rev(cw(D))).

Collapsing on multiline diagrams

Theorem: The collapsing map is a is a weight-preserving bijection

ρ̃ : MLD(λ, n) −→
⋃
µ≤λ

MLD0(µ, n)× SSYT(µ′, λ′)

with xDqm̃aj(D) = xÑqcocharge(Q̃) for (Ñ , Q̃) := ρ̃(D).

λ = (4,3,3,2)

m̃aj(D) = 9

µ = (3,3,2,2,1,1,1)

m̃aj(Ñ) = n(µ) = 8

3 3
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1 1 1 1 2 2 3

cocharge(Q̃) = 9

,

Corollary: The expansion of themodified Hall–Littlewood polynomials in terms of multiline

diagrams is

H̃λ(x1, . . . , xn; q, 0) :=
∑

µ

K̃λµ(q)sµ(x1, . . . , xn) =
∑

D∈MLD(λ,n)
qm̃aj(D)xD.

Moreover,

K̃λµ(q) =
∑

D∈MLD(µ′,λ)
ρ̃N (D)=D(λ′)

qm̃aj(D) =
∑

D∈MLD(λ′,µ)
qm̃aj(r̃ot(D))

Multiline diagram RSK

Theorem: Themap dRSK :M→
⋃

λ MLD0(λ)×MLD0(λ) given by dRSK(T ) = (ρ̃ ↓(T ), ρ̃←(T ))
is a bijection.

Corollary: (Cauchy identity)
∏

i,j≥1

1
1− xiyj

=
∑
λ

sλ(X)sλ(Y )
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