36th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2024)

Vines and MAT-labeled graphs

an Nhat Tran (Leibniz University Hannover, Germany, tan.tran@math.uni-hannover.de) joint work with Hung Manh Tran (Singapore) and Shuhei Tsujie (Hokkaido)

Introduction

Sommers-Tymoczko 2006, Abe-Barakat-Cuntz-Hoge-Terao 2016

Let Φ be an irreducible root system and $\mathcal{I} \subseteq \Phi^+$ an **ideal** (downwardclosed subset) of the root poset. Then the ideal subarrangement

MAT-free arrangements (ABCHT 2016, CM 2020)

Let $\mathcal{A} \neq \emptyset$. A partition $\pi = (\pi_1, \ldots, \pi_n)$ of \mathcal{A} is called an **MATpartition** if the following conditions hold for every $1 \le k \le n$:

(1) The hyperplanes in π_k are linearly independent. (2) $\not\exists H' \in \mathcal{A}_{k-1}$ such that $\bigcap_{H \in \pi_k} H \subseteq H'$, where $\mathcal{A}_{k-1} := \pi_1 \sqcup \cdots \sqcup \pi_{k-1} \text{ and } \mathcal{A}_0 := \emptyset.$ (3) For each $H \in \pi_k$, $|\mathcal{A}_{k-1}| - |(\mathcal{A}_{k-1} \cup \{H\})^H| = k - 1$.

 $\mathcal{A}_{\mathcal{I}} = \{ \alpha^{\perp} \mid \alpha \in \mathcal{I} \}$ is **MAT-free** $\implies \mathcal{A}_{\mathcal{I}}$ is **free**.

Definition

Let $G = (V_G, E_G)$ be an undirected, simple graph with $|V_G| = \ell$. The **graphic arrangement** \mathcal{A}_G in \mathbb{K}^{ℓ} is defined by

 $\mathcal{A}_G := \{ x_i - x_j = 0 \mid \{ v_i, v_j \} \in E_G \}.$

Stanley 1972, Edelman-Reiner 1994

 \mathcal{A}_G is free $\iff G$ is **chordal**, i.e. G is C_n -free for $n \ge 4$, where C_n is the **cycle graph**.

T-Tsujie 2023

 \mathcal{A}_G is MAT-free $\iff G$ is strongly chordal, i.e. G is chordal and S_n -free for $n \geq 3$, where S_n is the **sun graph**.

Question (Cuntz-Mücksch 2020)

Can we characterize the MAT-freeness by a poset structure generalizing

An arrangement is called **MAT-free** if it is empty or admits an MAT-partition.

MAT-labelings (TT 2023)

Given a graph G, a labeling $\lambda \colon E_G \longrightarrow \mathbb{Z}_{>0}$ is an **MAT-labeling** if the following conditions hold for every $k \geq 1$:

(1) An edge of label $\leq k$ doesn't form a cycle with edges of label k. Every edge of label k forms exactly k-1 triangles with edges of (2)label < k.

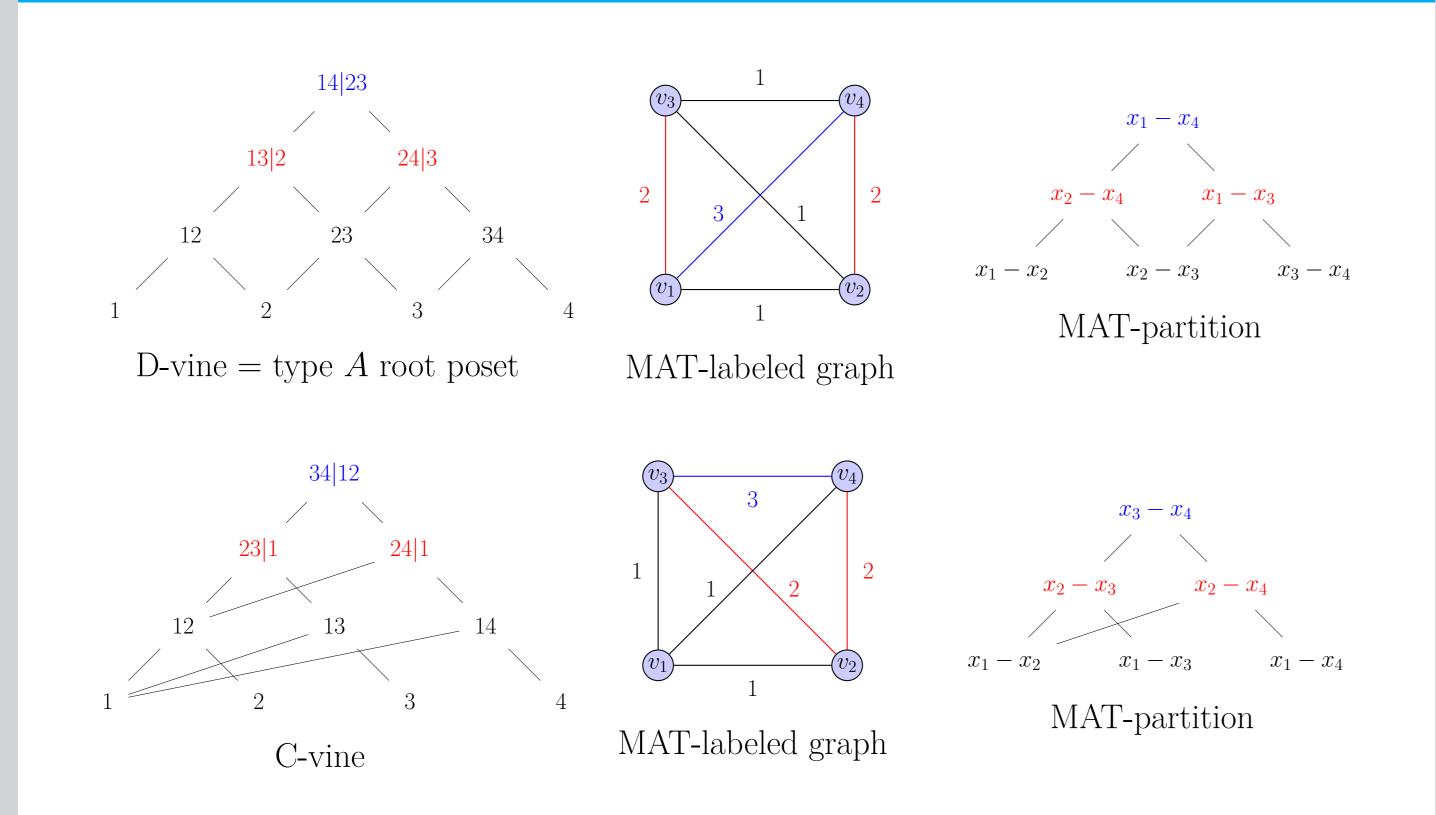
 (G, λ) is called an **MAT-labeled graph** if λ is an MAT-labeling.

the classical root poset?

Tran-T-Tsujie 2023+

YES for graphic arrangements! The MAT-freeness is completely characterized by **locally regular vines** from **probability theory**.

Examples



LR-vines (Joe 1994, Cooke 1997, Bedford-Cooke 2001, TTT 2024+)

A locally regular vine (or LR-vine) \mathcal{P} is a finite graded poset that satisfies:

- Every non-minimal node covers exactly two other nodes, and any two distinct nodes of the same rank are covered by at most one node.
- (2) For each $1 \leq i \leq \operatorname{rk}(\mathcal{P})$, the graph $F_i = (\mathcal{P}_i, \mathcal{P}_{i+1}^{\leq})$ is a **forest** where \mathcal{P}_{i+1}^{\leq} denotes the sets of pairs in \mathcal{P}_i covered by \mathcal{P}_{i+1} . **Proximity**: For any distinct non-minimal nodes *a*, *b* of the (3)same rank, if a and b are covered by a common node, then aand b cover a common node.

Main result (TTT 2023+)

There exists an **equivalence** between the category of **MAT**-

Free arrangements (Saito 1980, Terao 1980)

Let \mathbb{K} be a field, and $S = \mathbb{K}[x_1, \ldots, x_\ell]$. Let \mathcal{A} be an arrangement in \mathbb{K}^{ℓ} , and $Q = Q(\mathcal{A})$ the defining polynomial of \mathcal{A} . Let Der(S) = $\bigoplus_{i=1}^{\ell} S \partial_{x_i}$. The module of *A*-derivations is defined by $D(\mathcal{A}) := \{ \varphi \in \operatorname{Der}(S) \mid \varphi(Q) \in QS \}.$ The arrangement \mathcal{A} is called **free** if $D(\mathcal{A})$ is a free S-module.

labeled graphs and the category of **LR-vines**.

Main references

[1] T. Abe, M. Barakat, M. Cuntz, T. Hoge, and H. Terao. The freeness of ideal subarrangements of Weyl arrangements. J. Eur. Math. Soc. (JEMS), 18(6):1339–1348, 2016. [2] H. M. Tran, T. N. Tran, and S. Tsujie. Vines and MAT-labeled graphs. arXiv:2311.17793. [3] T. N. Tran and S. Tsujie. MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling. Algebr. Comb., 6(6):1447–1467, 2023.