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Introduction MAT-free arrangements (ascHT 2016, cm 2020)

Sommers-Tymoczko 2006, Abe-Barakat-Cuntz-Hoge-Terao 2016 Let A # &. A partition m = (mq,...,m,) of A is called an MAT-

Let @ be an irreducible root system and Z C & an ideal (downward- partition if the following conditions hold for every 1 < k& < n:
closed subset) of the root poset. Then the ideal subarrangement (1) The hyperplanes in 7, are linearly independent.
.AI — {ogL | Q< Z} is MAT-free — AI is free. (2> /EH/ c Ak—l such that ﬂH@rk H g }[/7 where
‘ Ak—l I:7T1L|"°L|7Tk_1 and ./40 = .
| (3) For each H € my, |Ap_1| — [(Apt U{H}D"| =k — 1.
Let & = (Vg, Eg) be an undirected, simple graph with [V = £. The An arrangement is called M AT-free if it is empty or admits an
eraphic arrangement Ag in K¢ is defined by MAT-partition
A ={x;—x; =0 | {v,v;} € Eg}.

Stanley 1972, Edelman-Reiner 1994 \ :
Ag is free <= (G is chordal, i.e. GG is C)-free for n > 4, where C,, is MAT-IabeIIngS (TT 2023)

the cycle graph.
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Ag is MAT-free <= @ is strongly chordal, ie. G is chordal and (1) An edge of label < k doesn’t form a cycle with edges of label k.

Sp-free for n > 3, where .5, is the sun graph. (2) Every edge of label k forms exactly k — 1 triangles with edges of
label < k.

Question (Cuntz-Miicksch 2020) | (G, \) is called an M AT-labeled graph if X is an MAT-labeling.

Can we characterize the MAT-freeness by a poset structure generalizing
the classical root poset?
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YES for graphic arrangements! The MAT-freeness is completely charac- A locally regular vine ( or LR-vin e) P is a finite eraded poset
terized by locally regular vines from probability theory. hat satisf;
al SatlsIles:

Given a graph G, a labeling \: Fg — Z~( is an M AT-labeling
if the following conditions hold for every k > 1.

LR-VINesS (Joe 1994, Cooke 1997, Bedford-Cooke 2001, TTT 2024+)

(1) Every non-minimal node covers exactly two other nodes, and
any two distinct nodes of the same rank are covered by at most

(2) For each 1 < i < 1k(P), the graph F; = (P;, P7;,) is a forest

where P=, denotes the sets of pairs in P; covered by Pj. .
Y
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" o 8 Main result (rrr 2023+
/ \ 3 T3 — T4
/2;/ 24‘1\ TG ) x/ \x B There exists an equivalence between the category of MAT-
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Free arrangements (saito 1980, Terao 1980)
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