Introduction

- transitively on the set of bases in various ways.

- $\mathbf{G}(M)$ consists of the equivalence classes of orientations.

- and reverse it. (Such a circuit or cocircuit always exists.)

A pair of signatures (σ, σ^*) picks an orientation for every circuit and cocircuit of • Every regular matroid is associated with a *sandpile group*, which acts simply M; it is *triangulating* if it satisfies certain non-overlapping condition. **Example**: for a plane graph, orient each circuit counterclockwise; orient each • A family of group actions is *consistent* if it respects **deletion-contraction**. We prove the group action constructed by Backman–Santos–Yuen and Ding is cocircuit away from a fixed vertex q. consistent, generalizing the result by Ganguly–McDonough for planar graphs. Setting **Fact**: A triangulating signature σ (resp. σ^*) • M: a regular matroid on E; $\mathbf{B}(M)$: bases of M. \Leftrightarrow a triangulation of the Lawrence polytope of M (resp. M^*) • Sandpile group S(M): $\frac{\mathbb{Z}^E}{\Lambda(M)\oplus\Lambda^*(M)}$, where $\Lambda(M)$ (resp. $\Lambda^*(M)$) is the \Leftrightarrow a generic single-element lifting (resp. extension) of M. sublattice generated by all signed circuits (resp. cocircuits) of M. • Circuit-cocircuit reversal system G(M): two orientations of M are equivalent if one can be obtained from the other by reversing directed circuits/cocircuits: $\beta_{(M,\sigma,\sigma^*)}(B)$ (thus a class in G(M)): if one can be obtained from the other by reversing directed circuits/cocircuits; • For every $f \in B$, orient f according to $\sigma^*(D)$, where D is the fundamental cocircuit of f w.r.t. B. • For every $f \notin B$, orient f according to $\sigma(C)$, where C is the fundamental circuit of f w.r.t. B. f.c. of f_2 Orient f_2 Also orient **Canonical Action** $S(M) \circlearrowright \mathbf{G}(M)$ 1 and f.cc. of f_3 Orient f_3 An oriented element $\overrightarrow{f} \in \mathbb{Z}^E$ acts on a reversal class $[\mathcal{O}]$: • If f is oriented as \overline{f} in \mathcal{O} , pick a directed circuit/cocircuit of \mathcal{O} containing f**Proposition (Backman–Santos–Yuen 2020, Ding 2023+)** • Reverse the orientation of f. For a pair (σ, σ^*) of triangulating signatures, the BBY map $\beta_{(M,\sigma,\sigma^*)}$ is a bijection Extend linearly to obtain $\mathbb{Z}^E \circlearrowright \mathbf{G}(M)$ which descends to $S(M) \circlearrowright \mathbf{G}(M)$. between $\mathbf{B}(M)$ and $\mathbf{G}(M)$. Reverse $\overrightarrow{f_1 f_3 f_2}$ $\overrightarrow{f_2}$. **BBY Action** $S(M) \odot \mathbf{B}(M)$

Proposition (Backman–Baker–Yuen 2019)

The canonical action is well-defined and simply transitive.

A Consistent Sandpile Torsor Algorithm for Regular Matroids

Changxin Ding Georgia Tech, Alex McDonough University of Oregon, Lilla Tóthmérész Eötvös Loránd University, Chi Ho Yuen NYCU

BBY Bijection $\mathbf{B}(M) \longleftrightarrow \mathbf{G}(M)$

For a regular matroid M equipped with a pair of triangulating signatures (σ, σ^*) an element $\gamma \in S(M)$, and a basis B_1 , we define the BBY action $\gamma \cdot B_1 := B_2 \Longleftrightarrow \gamma \cdot eta_{(M,\sigma,\sigma^*)}(B_1)$

That is, we compose the aforementioned constructions: $S(M) \circlearrowright \mathbf{G}(M) \xleftarrow{\beta} \mathbf{B}(M)$

$$) = eta_{(M,\sigma,\sigma^*)}(B_2).$$

is a directed element and $B_1, B_2 \in \mathbf{B}(M)$. Then

- some useful orthogonality results.

Corollary (Ganguly–McDonough 2023, Tóthmérész 2023)

The *rotor-routing* sandpile torsor algorithm on plane graphs is consistent.

BBY action induces the unique consistent sandpile torsor algorithm with respect to triangulating circuit-cocircuit signatures.

- S. Backman, S. Hopkins. Fourientations and the Tutte polynomial
- S. Backman, F. Santos, C.H. Yuen. Topological bijections for oriented matroids

Theorem

Some Proof Ingredients

• We work with (σ, σ^*) -compatible orientations **O** as representatives of reversal classes, and show that the action of a directed element on $\mathcal{O} \in \mathbf{O}$ only modifies at most one circuit and one cocircuit, allowing a local analysis. • We use the *fourientation* approach to describe BBY bijections, which provides

Conjecture

References

• S. Backman, M. Baker, C.H. Yuen. Geometric bijections for regular matroids, zonotopes, and Ehrhart theory

• C. Ding. A framework unifying some bijections for graphs and its connection to Lawrence polytopes

• A. Ganguly, A. McDonough. Rotor-routing induces the only consistent sandpile torsor structure on plane graphs • L.Tóthmérész. Consistency of the planar rotor-routing action via the trinity definition

email:lilla.tothmeresz@ttk.elte.hu, arXiv:2407.03999