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Introduction

Every regular matroid is associated with a sandpile group, which acts simply
transitively on the set of bases in various ways.
A family of group actions is consistent if it respects deletion-contraction.
We prove the group action constructed by Backman–Santos–Yuen and Ding is
consistent, generalizing the result by Ganguly–McDonough for planar graphs.

Setting

M : a regular matroid on E; B(M): bases of M .
Sandpile group S(M): ZE

Λ(M)⊕Λ∗(M), where Λ(M) (resp. Λ∗(M)) is the
sublattice generated by all signed circuits (resp. cocircuits) of M .
Circuit-cocircuit reversal system G(M): two orientations of M are equivalent
if one can be obtained from the other by reversing directed circuits/cocircuits;
G(M) consists of the equivalence classes of orientations.

|G(U2,3)| = 3

Canonical Action S(M) ⟳ G(M)

An oriented element
−→
f ∈ ZE acts on a reversal class [O]:

If f is oriented as
−→
f in O, pick a directed circuit/cocircuit of O containing f

and reverse it. (Such a circuit or cocircuit always exists.)
Reverse the orientation of f .

Extend linearly to obtain ZE ⟳ G(M) which descends to S(M) ⟳ G(M).
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Proposition (Backman–Baker–Yuen 2019)

The canonical action is well-defined and simply transitive.

BBY Bijection B(M)←→ G(M)

A pair of signatures (σ, σ∗) picks an orientation for every circuit and cocircuit of
M ; it is triangulating if it satisfies certain non-overlapping condition.
Example: for a plane graph, orient each circuit counterclockwise; orient each
cocircuit away from a fixed vertex q.
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Fact: A triangulating signature σ (resp. σ∗)
⇔ a triangulation of the Lawrence polytope of M (resp. M∗)
⇔ a generic single-element lifting (resp. extension) of M .

Given a pair (σ, σ∗) of signatures and a basis B ∈ B(M), we can produce an
orientation β(M,σ,σ∗)(B) (thus a class in G(M)):

For every f ∈ B, orient f according to σ∗(D), where D is the fundamental
cocircuit of f w.r.t. B.
For every f ̸∈ B, orient f according to σ(C), where C is the fundamental
circuit of f w.r.t. B.

B

f1

f3

f4

f2

f.c. of f2

f.cc. of f3

f1

f3

f2 Orient f2 f2

Also orient
f1 and f4

f3

f4

f2 Orient f3
f3

β(M,σ,σ∗)(B)

f1

f3

f4

f2

Proposition (Backman–Santos–Yuen 2020, Ding 2023+)

For a pair (σ, σ∗) of triangulating signatures, the BBY map β(M,σ,σ∗) is a bijection
between B(M) and G(M).

BBY Action S(M) ⟳ B(M)

For a regular matroid M equipped with a pair of triangulating signatures (σ, σ∗),
an element γ ∈ S(M), and a basis B1, we define the BBY action

γ · B1 := B2⇐⇒ γ · β(M,σ,σ∗)(B1) = β(M,σ,σ∗)(B2).

That is, we compose the aforementioned constructions:

S(M) ⟳ G(M)
β←−−→ B(M)

Theorem

The family of BBY actions is consistent.
More precisely, for the triple (M,σ, σ∗), suppose that [

−→
f ] ·B1 = B2, where

−→
f

is a directed element and B1, B2 ∈ B(M). Then
1. ∀e ∈ (Bc

1 ∩Bc
2) \ f , the BBY action for (M \ e, σ \ e, σ∗ \ e) satisfies

[
−→
f ] · (B1 \ e) = (B2 \ e);

2. ∀e ∈ (B1 ∩ B2) \ f , the BBY action for (M/e, σ/e, σ∗/e) satisfies
[
−→
f ] · (B1/e) = (B2/e).

Here the three [
−→
f ]’s are in S(M), S(M \ e), and S(M/e), respectively,
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Some Proof Ingredients

We work with (σ, σ∗)-compatible orientations O as representatives of reversal
classes, and show that the action of a directed element on O ∈ O only
modifies at most one circuit and one cocircuit, allowing a local analysis.
We use the fourientation approach to describe BBY bijections, which provides
some useful orthogonality results.

Corollary (Ganguly–McDonough 2023, Tóthmérész 2023)

The rotor-routing sandpile torsor algorithm on plane graphs is consistent.

Conjecture

BBY action induces the unique consistent sandpile torsor algorithm with respect
to triangulating circuit-cocircuit signatures.
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