

COXETER GROUPS

Let (W, S) be a finite Coxeter system.

- $s \in S$ is a left descent of w if $\ell(sw) < \ell(w)$, $s \in S$ is a **right descent** of w if $\ell(ws) < \ell(w)$.
- Let $\mathcal{D}_L(w)$ denote the set of left descents of w, and let $\mathcal{D}_R(w)$ denote the set of right descents of *w*.
- For $I \subseteq S$, the **right descent class** \mathcal{D}_I is the set $\{w \in W : \mathcal{D}_R(w) = I\}.$
- For $I \subseteq J \subseteq S$, let \mathcal{D}_I^J denote the union of all \mathcal{D}_X such that $I \subseteq X \subseteq J$.
- Let u_I denote the shortest element in \mathcal{D}_I and v_I the longest element in \mathcal{D}_I .
- The left weak Bruhat order \leq_L on W is defined by $u \leq_L v$ if some reduced word for uis a terminal segment in some reduced word for v.
- If $u \leq_L v$, the left weak Bruhat interval $[u, v]_L$ is the set $\{w \in W : u \leq_L w \leq_L v\}$.

O-HECKE ALGEBRAS

Let \mathbb{K} be a field. The 0-Hecke algebra $H_W(0)$ is the \mathbb{K} -algebra generated by $\{\pi_s : s \in S\}$ with relations

$$\pi_s^2 = \pi_s \text{ and } (\pi_s \pi_t)_{m_{st}} = (\pi_t \pi_s)_{m_{st}}$$

where $(ab)_r$ denotes the word $\cdots ab$ of length r alternating between a and b, and m_{st} is the order of st in W.

LINEAR OPERATORS ON $\mathbb{K}[u, v]_L$

Define linear operators $\{\pi_s : s \in S\}$ on the vector space $\mathbb{K}[u, v]_L$ by

 $w \quad \text{if } s \in \mathsf{D}_L(w),$ $\pi_s w = \begin{cases} sw & \text{if } s \notin D_L(w) \text{ and } sw \in [u, v]_L, \\ 0 & \text{if } s \notin D_L(w) \text{ and } sw \notin [u, v]_L. \end{cases}$

WEAK BRUHAT INTERVAL 0-HECKE MODULES IN FINITE TYPE

JOSHUA BARDWELL AND DOMINIC SEARLES UNIVERSITY OF OTAGO

WEAK BRUHAT INTERVAL MODULES

Theorem: The operators $\{\pi_s : s \in S\}$ define an action of $H_W(0)$ on $\mathbb{K}[u, v]_L$.

Following Jung, Kim, Lee and Oh, who introduced and studied these modules in type A, we call the $H_W(0)$ -module $\mathbb{K}[u, v]_L$ a weak Bruhat in**terval module**, and denote it by B(u, v).

Theorem: Let P_I denote $B(u_I, v_I)$ and P_I^J denote $B(u_I, v_J)$. The P_I are projective indecomposable modules, and

$$\mathbf{P}_I^J \cong \bigoplus_{I \subseteq X \subseteq J} \mathbf{P}_X.$$

STRUCTURAL RESULTS

Proposition: The weak Bruhat interval modules $B(w, v_I)$ and $B(u_I, w)$ are indecomposable for all $w \in$ \mathcal{D}_I , and all submodules of $B(w, v_I)$ and quotients of $B(u_I, w)$ are also indecomposable.

Fayers introduced certain (dual) equivalences of the category $H_W(0)$ -mod, based on involutions ϕ , θ and an anti-involution χ on $H_W(0)$ defined by

$$\phi: \pi_s \mapsto \pi_{w_0 s w_0}, \qquad \qquad \theta: \pi_s \mapsto 1 -$$

Let *M* be a $H_W(0)$ -module. Define $H_W(0)$ -modules $\phi[M]$, $\theta[M]$, $\chi[M]$ such that

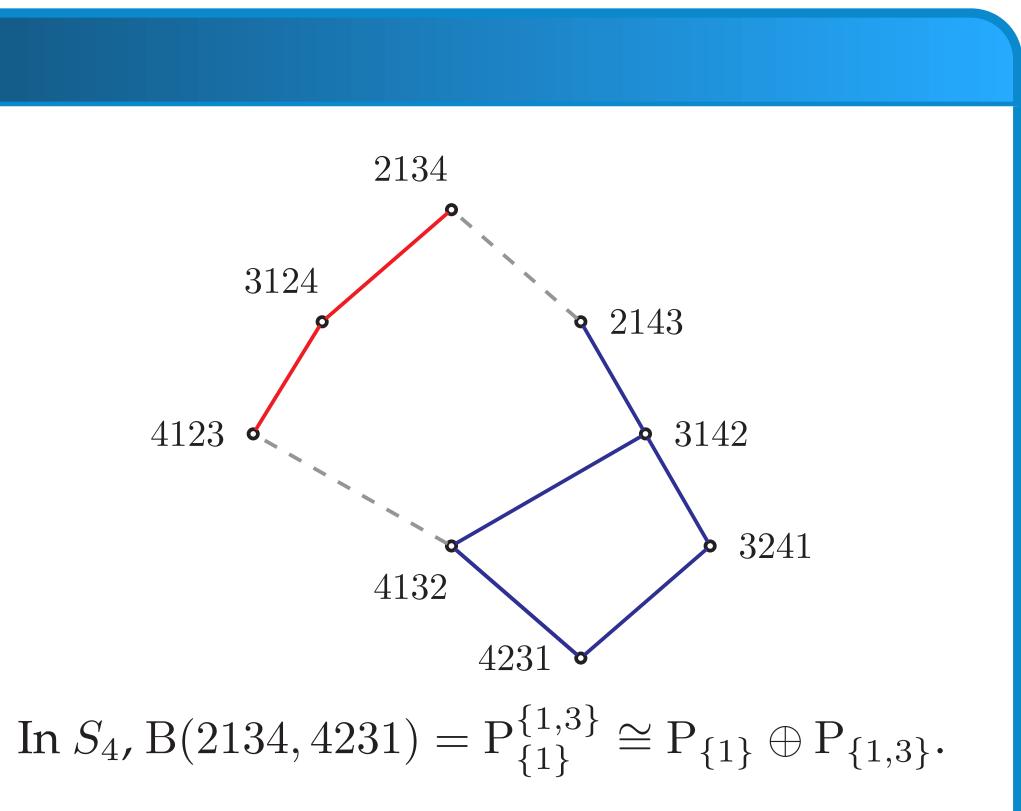
- $\phi[M]$ has underlying space M, with action $\pi_s \cdot_{\phi} m = \phi(\pi_s) \cdot m$ for $m \in M$
- $\theta[M]$ has underlying space M, with action $\pi_s \cdot_{\theta} m = \theta(\pi_s) \cdot m$ for $m \in M$
- $\chi[M]$ has underlying space M^* , with action $(\pi_s \cdot^{\chi} f)(m) = f(\chi(\pi_s) \cdot m)$ for $f \in M^*$ and $m \in M$.

Theorem: Let $\hat{\theta} := \theta \circ \chi$ and $\hat{\omega} := \phi \circ \theta \circ \chi$. If *Y* is an upper order ideal in $[u, v]_L$, then we have the following isomorphisms of $H_W(0)$ -modules.

> $\Phi[\mathcal{B}(u,v)/\mathbb{K}Y] \cong \mathbb{K}([w_0uw_0, w_0vw_0]_L \setminus w_0Yw_0),$ $\hat{\theta}[\mathcal{B}(u,v)/\mathbb{K}Y] \cong \mathbb{K}([vw_0, uw_0]_L \setminus Yw_0),$ $\hat{\omega}[\mathcal{B}(u,v)/\mathbb{K}Y] \cong \mathbb{K}([w_0v,w_0u]_L \setminus w_0Y).$

This extends certain results of Jung, Kim, Lee and Oh in type A, and is useful in establishing the injective hull results below.

Theorem: Let Y be an upper order ideal in \mathcal{D}_I^J with $u_J \notin Y$. Then \mathcal{P}_I^J is the projective cover of $\mathcal{P}_I^J/\mathbb{K}Y$. **Theorem:** Let *Y* be an upper order ideal in \mathcal{D}_I^J with $v_I \in Y$. Then \mathcal{P}_I^J is the injective hull of $\mathbb{K}Y$. Specialising these results to Bruhat interval modules, we obtain **Corollary:** Let $I \subseteq J$ and $w \in \mathcal{D}_J$. Then P_I^J is the projective cover of $B(u_I, w)$. **Corollary:** Let $I \subseteq J$ and $w \in \mathcal{D}_I$. Then P_I^J is the injective hull of $B(w, v_J)$.



 $\chi:\pi_s\mapsto\pi_s.$ $\pi_s,$

APPLICATIONS

The quasisymmetric characteristic map connects representation theory of type A 0-Hecke algebras to the algebra of quasisymmetric functions.

For several notable bases of quasisymmetric functions, modules of type A 0-Hecke algebras have been constructed such that their quasisymmetric characteristics are elements of these bases. These include

- Dual immaculate functions
- Extended Schur functions
- Row-strict dual immaculate functions
- Row-strict extended Schur functions
- Quasisymmetric Schur functions
- Young row-strict quasisymmetric Schur functions.

The structural results on weak Bruhat interval modules can be used to recover a number of results on indecomposability and projective covers, and obtain new results, for some of these modules in a uniform manner.

REFERENCES

- [1] J. Bardwell and D. Searles. Weak Bruhat interval modules of finite-type 0-Hecke algebras and projective covers. *preprint*, 2023. arXiv:2311.10068.
- [2] S.-I. Choi, Y.-H. Kim, S.-Y. Nam, and Y.-T. Oh. The projective cover of tableau-cyclic indecomposable $H_n(0)$ -modules. Trans. Amer. Math. Soc., 375(11):7747-7782, 2022.
- [3] M Fayers. 0-Hecke algebras of finite Coxeter groups. J. Pure Appl. Algebra, 199(1-3):27–41, 2005.
- J. Huang. A tableau approach to the representation theory of 0-Hecke algebras. Ann. Comb., 20(4):831– 868, 2016.
- [5] W.-S. Jung, Y.-H. Kim, S.-Y. Lee, and Y.-T. Oh. Weak Bruhat interval modules of the 0-Hecke algebra. Math. Z., 301:3755–3786, 2022.
- P. N. Norton. 0-Hecke algebras. J. Aust. Math. Soc., 27(3):337–357, 1979.

