Combinatorial Background

- A Hessenberg function is $h:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ that is weakly increasing and $h(i) \geq i$ for all i.

We use the shorthand $h=(h(1), h(2), \ldots, h(n))$. Hessenberg functions can be visualized via Dyck paths, as seen below.

- The poset P_{h} on $\{1,2, \ldots, n\}$ is defined by $i<_{P_{h}} j$ whenever $h(i)<j$.
- The graph G_{h} is the incomparability graph of P_{h}.

Figure: For $h=(3,5,5,5,5)$, the corresponding Dyck path, poset P_{h}, and graph G_{h}.

- The chromatic quasisymmetric function [5] of a graph G is $X_{G}(x ; q)=\sum q^{\text {asc(}(k)} x_{\kappa(1)} \cdots x_{\kappa(n)}$ where the sum is over all
proper colorings of the vertices of G, and asc (κ) is the number of pairs of vertices $i<j$ such that $\kappa(i)<\kappa(j)$.

Geometric Background

- The flag variety Flag $\left(\mathbb{C}^{n}\right)$ is the set of nested subspaces $F_{\bullet}=F_{0} \subset F_{1} \subset \cdots \subset F_{n}$, called flags, where each F_{i} is a subspace of \mathbb{C}^{n} of dimension i.
- Given a linear map $S: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, and a Hessenberg function h, the corresponding Hessenberg variety is

$$
\operatorname{Hess}(S, h)=\left\{F_{\bullet} \in \operatorname{Flag}\left(\mathbb{C}^{n}\right) \mid S\left(F_{i}\right) \subseteq F_{h(i)}\right\}
$$

- The cohomology ring $H^{*}(\operatorname{Hess}(S, h))$ is a graded \mathfrak{S}_{n}-module [7], and the image under the Frobenius character map is related to the chromatic quasisymmetric function in the following way. [2, 4] If S is a regular semisimple map, then we have

$$
\sum_{k=0}^{N} \operatorname{Frob}\left(H^{2 k}(\operatorname{Hess}(S, h))\right) q^{k}=\omega X_{G_{h}}(x ; q)
$$

- In [1], the authors describe $H^{*}(\operatorname{Hess}(S, h))$ as a polynomial ring when $h=(h(1), n, \ldots, n)$:

$$
H^{*}(\operatorname{Hess}(S, h)) \cong \mathbb{Z}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] / I
$$

where the generators of I are explicitly given.

- In most cases, however, there is not a polynomial ring realization of $H^{*}(\operatorname{Hess}(S, h))$.

Higher Specht basis for $H^{*}(\operatorname{Hess}(S, h))$

- Suppose that $h=(h(1), n, \ldots, n)$.
- We begin by adapting the basis in [1] to form a higher Specht basis. Define sets:

$$
\begin{aligned}
& B_{1}=\left\{x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}} \text { not containing the factor } \prod_{\ell=1}^{h(1)} x_{\ell}\right\} \\
& B_{2}=\left\{x_{n}^{\ell_{1}} x_{n-1}^{\ell_{2}} \cdots x_{2}^{\ell_{n-1}}\left(y_{k}-y_{1}\right) \text { not containing the factor } \prod_{\ell=h(1)+1}^{n} x_{\ell}\right\}
\end{aligned}
$$

where $0 \leq i_{j} \leq n-j$ in B_{1} and $0 \leq \ell_{j} \leq n-j-1$ and $2 \leq k \leq n$ in B_{2}.

- \mathfrak{S}_{n} acts on these sets by fixing the x_{i} 's and permuting the y_{i} 's.

Theorem 1. The set $B_{1} \cup B_{2}$ forms a higher Specht basis of $H^{*}(H e s s(S, h))$. In particular, if this \mathfrak{S}_{n}-module decomposes into irreducibles as

$$
H^{*}(\operatorname{Hess}(S, h)) \cong \bigoplus_{\lambda \vdash n} c_{\lambda} V_{\lambda} \text {, then we have } B_{1} \cup B_{2}=\bigcup_{\lambda \vdash n} \bigcup_{i=1}^{c_{\lambda}} B_{i, \lambda}
$$

where the elements of $B_{i, \lambda}$ form a basis of the i-th copy of V_{λ} in the decomposition.
Corollary 2. The \mathfrak{S}_{n}-module $H^{*}(\operatorname{Hess}(S, h))$ decomposes into $h(1)(n-1)$! copies of the trivial representation and $(n-h(1))(n-2)$! copies of the standard representation.
Theorem 3. The following set of monomials form a (permutation) basis of $H^{*}(\operatorname{Hess}(S, h))$.

$$
B_{3}=\left\{x_{n}^{\ell_{1}} x_{n-1}^{\ell_{2}} \cdots x_{2}^{\ell_{n-1}} y_{k} \text { not containing the factor } \prod_{\ell=h(1)+1}^{n} x_{\ell}\right\}
$$

where $1 \leq k \leq n$.

Bijections with P_{h}-tableaux

- Since Specht modules have basis elements indexed by standard Young tableaux, we are motivated to find a bijection between the sets B_{1} and B_{2} and certain sets of tableaux.
- A P_{h}-tableaux of shape λ is a filling of the diagram of λ with entries from P_{h} satisfying:
-Each entry of P_{h} is used exactly once.
-Rows are P_{h}-increasing.
-Adjacent entries in columns are P_{h}-nondecreasing.
- P_{h}-tableaux were used by Gasharov to show that $X_{G_{h}}(x ; q)$ is Schur-positive for any Hessenberg function h. [3]
Theorem 4. If $h=(h(1), n, \ldots, n)$, then there is a bijection between the set of monomials in set B_{1} and the set of P_{h}-tableaux with shape $\left(1^{n}\right)$.

Theorem 5.If $h=(h(1), n, \ldots, n)$, then there is bijection between the set of monomials in set B_{2} and the set of pairs of P_{h}-tableaux and standard tableaux, both with shape $\left(2,1^{n-2}\right)$.

Positivity in the elementary basis

- Stanley [6] showed that graphs with independence number 1 or 2 are e positive. When $h=(h(1), n, \ldots, n)$, the vertices $2, \ldots, n$ in G_{h} form a clique, so these graphs are in that category.
- We give another proof of this fact from the Hessenberg variety: Theorem 3 says that $H^{*}(\operatorname{Hess}(S, h))$, as an \mathfrak{S}_{n}-module, forms a permutation representation.
- The Frobenius character of a permutation representation is the complete homogeneous symmetric function h_{λ}, and applying the involution ω gives an e-positive expansion of $X_{G_{h}}(x ; q)$ for this Hessenberg function.

References

[1] H. Abe, T. Horiguchi, and M. Masuda. "The cohomology rings of regular semisimple Hessenberg varieties for $\mathrm{h}=(\mathrm{h}(1), \mathrm{n}, \ldots, \mathrm{n})$ ". In: Journal of Combinatorics 10.1 (2019), ple Hessenb
pp. $27-59$.
[2] Patrick Brosnan and Timothy Y. Chow "Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties". In: Advances in Mathematics 329 (2018), pp. 955-1001
[3] Vesselin Gasharov. "Incomparability graphs of $(3+1)$-free posets are s-positive". In: Discrete Mathematics 157.1 (1996), pp. 193-197.
[4] Mathieu Guay-Paquet. A second proof of the Shareshian-Wachs conjecture, by way of a new Hopf algebra. 2016.
[5] John Shareshian and Michelle L. Wachs. "Chromatic quasisymmetric functions". In Advances in Mathematics 295 (2016), pp. 497-551.
[6] R. Stanley. "A Symmetric Function Generalization of the Chromatic Polynomial of a Graph". In. Advances in Mathematics 11.1 (1995), pp. 166-194
eties" In: Taric

