Combinatorial Background

- The poset P_h on $\{1, 2, \ldots, n\}$ is defined by $i <_{P_h} j$ whenever h(i) < j.
- The graph G_h is the incomparability graph of P_h .

Higher Specht basis for $H^*(\text{Hess}(S, h))$

- Suppose that $h = (h(1), n, \dots, n)$.
- We begin by adapting the basis in [1] to form a higher Specht basis. Define sets:

$$B_{1} = \left\{ x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}} \text{ not containing the factor } \prod_{\ell=1}^{h(1)} x_{\ell} \right\}$$
$$B_{2} = \left\{ x_{n}^{\ell_{1}} x_{n-1}^{\ell_{2}} \cdots x_{2}^{\ell_{n-1}} (y_{k} - y_{1}) \text{ not containing the factor } \right\}$$

where $0 \le i_j \le n - j$ in B_1 and $0 \le \ell_j \le n - j - 1$ and $2 \le k \le n$ in B_2 . • \mathfrak{S}_n acts on these sets by fixing the x_i 's and permuting the y_i 's.

Theorem 1. The set $B_1 \cup B_2$ forms a higher Specht basis of $H^*(\text{Hess}(S, h))$. In particular, if this \mathfrak{S}_n -module decomposes into irreducibles as

$$H^*(\text{Hess}(S,h)) \cong \bigoplus_{\lambda \vdash n} c_{\lambda} V_{\lambda}$$
, then we have $B_1 \cup B_2 = \bigcup_{\lambda \vdash n} \bigcup_{i=1}^{c_{\lambda}} B_{i,\lambda}$
lements of $B_{i,\lambda}$ form a basis of the *i*-th copy of V_{λ} in the decomposition.

where the el $J D_{l,\lambda} J$

Corollary 2. The \mathfrak{S}_n -module $H^*(\text{Hess}(S,h))$ decomposes into h(1)(n-1)! copies of the trivial representation and (n - h(1))(n - 2)! copies of the standard representation. **Theorem 3.** The following set of monomials form a (permutation) basis of $H^*(\text{Hess}(S, h))$.

$$B_3 = \left\{ x_n^{\ell_1} x_{n-1}^{\ell_2} \cdots x_2^{\ell_{n-1}} y_k \text{ not containing the factor } \prod_{\ell=h(1)+1}^n x_\ell \right\}$$

where $1 \leq k \leq n$.

HIGHER SPECHT POLYNOMIALS AND TABLEAUX BIJECTIONS FOR HESSENBERG VARIETIES Kyle Salois - Colorado State University

Bijections with P_h **-tableaux**

- Since Specht modules have basis elements indexed by standard Young tableaux, we are motivated to find a bijection between the sets B_1 and B_2 and certain sets of tableaux.
- A P_h -tableaux of shape λ is a filling of the diagram of λ with entries from P_h satisfying: -Each entry of P_h is used exactly once.
- -Rows are P_h -increasing.
- -Adjacent entries in columns are P_h -nondecreasing.
- P_h -tableaux were used by Gasharov to show that $X_{G_h}(x;q)$ is Schur-positive for any Hessenberg function h. [3]

Theorem 4. If h = (h(1), n, ..., n), then there is a bijection between the set of monomials in set B_1 and the set of P_h -tableaux with shape (1^n) .

$$x_1^2 x_3 x_4 \quad \Rightarrow$$

Theorem 5. If h = (h(1), n, ..., n), then there is bijection between the set of monomials in set B_2 and the set of pairs of P_h -tableaux and standard tableaux, both with shape $(2, 1^{n-2})$.

$$\left. \prod_{\ell=h(1)+1}^{n} x_{\ell} \right\}$$
in B_{2}

Geometric Background

• The flag variety $\operatorname{Flag}(\mathbb{C}^n)$ is the set of nested subspaces $F_{\bullet} = F_0 \subset F_1 \subset \cdots \subset F_n$, called flags, where each F_i is a subspace of \mathbb{C}^n of dimension *i*.

• Given a linear map $S : \mathbb{C}^n \to \mathbb{C}^n$, and a Hessenberg function h, the corresponding **Hessenberg variety** is

 $\operatorname{Hess}(S,h) = \{F_{\bullet} \in \operatorname{Flag}(\mathbb{C}^n) \mid S(F_i) \subseteq F_{h(i)}\}$

• The cohomology ring $H^*(\text{Hess}(S,h))$ is a graded \mathfrak{S}_n -module [7], and the image under the Frobenius character map is related to the chromatic quasisymmetric function in the following way. [2, 4] If S is a regular semisimple map, then we have

$$\sum_{k=0}^{N} \operatorname{Frob}(H^{2k}(\operatorname{Hess}(S,h))) q^{k} = \omega X$$

• In [1], the authors describe $H^*(\text{Hess}(S, h))$ as a polynomial ring when $h = (h(1), n, \dots, n)$:

$$H^*(\operatorname{Hess}(S,h)) \cong \mathbb{Z}[x_1,\ldots,x_n,y_1,\ldots,x_n,y_1,\ldots,x_n,y_n,\ldots,y_n,\ldots,y$$

where the generators of *I* are explicitly given.

• In most cases, however, there is not a polynomial ring realization of $H^*(\text{Hess}(S, h))$.

		4	4
	4	3	3
4	3	1	1
3	5	5	2
5	2	2	5

Positivity in the elementary basis

- clique, so these graphs are in that category.
- sentation.

References

- pp. 27–59.
- 329 (2018), pp. 955–1001.
- *Discrete Mathematics* 157.1 (1996), pp. 193–197.
- a new Hopf algebra. 2016.
- Advances in Mathematics 295 (2016), pp. 497–551.

 $X_{G_h}(x;q)$

 $\ldots, y_n]/I$

• Stanley [6] showed that graphs with independence number 1 or 2 are epositive. When h = (h(1), n, ..., n), the vertices 2, ..., n in G_h form a

• We give another proof of this fact from the Hessenberg variety: Theorem 3 says that $H^*(\text{Hess}(S,h))$, as an \mathfrak{S}_n -module, forms a permutation repre-

• The Frobenius character of a permutation representation is the complete homogeneous symmetric function h_{λ} , and applying the involution ω gives an *e*-positive expansion of $X_{G_h}(x;q)$ for this Hessenberg function.

[1] H. Abe, T. Horiguchi, and M. Masuda. "The cohomology rings of regular semisimple Hessenberg varieties for h=(h(1),n,...,n)". In: *Journal of Combinatorics* 10.1 (2019),

[2] Patrick Brosnan and Timothy Y. Chow. "Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties". In: Advances in Mathematics

[3] Vesselin Gasharov. "Incomparability graphs of (3 + 1)-free posets are s-positive". In:

[4] Mathieu Guay-Paquet. A second proof of the Shareshian–Wachs conjecture, by way of

[5] John Shareshian and Michelle L. Wachs. "Chromatic quasisymmetric functions". In:

[6] R. Stanley. "A Symmetric Function Generalization of the Chromatic Polynomial of a Graph". In: Advances in Mathematics 111.1 (1995), pp. 166–194.

[7] Julianna S. Tymoczko. "Permutation actions on equivariant cohomology of flag varieties". In: Toric topology. Contemp. Math. 460 (2008), pp. 365–384.