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Combinatorial Background

• A Hessenberg function is h : {1, 2, . . . , n} → {1, 2, . . . , n} that is weakly increasing and h(i) ≥ i for all i.
We use the shorthand h = (h(1), h(2), . . . , h(n)). Hessenberg functions can be visualized via Dyck paths, as seen below.

• The poset Ph on {1, 2, . . . , n} is defined by i <Ph
j whenever h(i) < j.

• The graph Gh is the incomparability graph of Ph.

Figure: For h = (3, 5, 5, 5, 5), the corresponding Dyck path, poset Ph, and graph Gh.

• The chromatic quasisymmetric function [5] of a graph G is XG(x; q) =
∑
κ

qasc(κ)xκ(1) · · · xκ(n) where the sum is over all

proper colorings of the vertices of G, and asc(κ) is the number of pairs of vertices i < j such that κ(i) < κ(j).

Geometric Background

• The flag variety Flag(Cn) is the set of nested subspaces F• = F0 ⊂ F1 ⊂ · · · ⊂ Fn, called flags, where each Fi is a subspace of
Cn of dimension i.

• Given a linear map S : Cn → Cn, and a Hessenberg function h, the corresponding Hessenberg variety is

Hess(S, h) = {F• ∈ Flag(Cn) | S(Fi) ⊆ Fh(i) }
• The cohomology ring H∗(Hess(S, h)) is a graded Sn-module [7], and the image under the Frobenius character map is related to

the chromatic quasisymmetric function in the following way. [2, 4] If S is a regular semisimple map, then we have
N∑
k=0

Frob(H2k(Hess(S, h))) qk = ωXGh
(x; q)

• In [1], the authors describe H∗(Hess(S, h)) as a polynomial ring when h = (h(1), n, . . . , n):

H∗(Hess(S, h)) ∼= Z[x1, . . . , xn, y1, . . . , yn]/I
where the generators of I are explicitly given.

• In most cases, however, there is not a polynomial ring realization of H∗(Hess(S, h)).

Higher Specht basis for H∗(Hess(S, h))

• Suppose that h = (h(1), n, . . . , n).

• We begin by adapting the basis in [1] to form a higher Specht basis. Define sets:

B1 =

xi11 x
i2
2 · · · xinn not containing the factor

h(1)∏
ℓ=1

xℓ


B2 =

xℓ1n xℓ2n−1 · · · x
ℓn−1

2 (yk − y1) not containing the factor
n∏

ℓ=h(1)+1

xℓ


where 0 ≤ ij ≤ n− j in B1 and 0 ≤ ℓj ≤ n− j − 1 and 2 ≤ k ≤ n in B2.

•Sn acts on these sets by fixing the xi’s and permuting the yi’s.

Theorem 1. The set B1 ∪B2 forms a higher Specht basis of H∗(Hess(S, h)). In particular,
if this Sn-module decomposes into irreducibles as

H∗(Hess(S, h)) ∼=
⊕
λ⊢n

cλVλ, then we have B1 ∪B2 =
⋃
λ⊢n

cλ⋃
i=1

Bi,λ

where the elements of Bi,λ form a basis of the i-th copy of Vλ in the decomposition.

Corollary 2. The Sn-module H∗(Hess(S, h)) decomposes into h(1)(n − 1)! copies of the
trivial representation and (n− h(1))(n− 2)! copies of the standard representation.

Theorem 3. The following set of monomials form a (permutation) basis of H∗(Hess(S, h)).

B3 =

xℓ1n xℓ2n−1 · · · x
ℓn−1

2 yk not containing the factor
n∏

ℓ=h(1)+1

xℓ


where 1 ≤ k ≤ n.

Bijections with Ph-tableaux

• Since Specht modules have basis elements indexed by standard Young tableaux, we are
motivated to find a bijection between the sets B1 and B2 and certain sets of tableaux.

• A Ph-tableaux of shape λ is a filling of the diagram of λ with entries from Ph satisfying:

– Each entry of Ph is used exactly once.
– Rows are Ph-increasing.
– Adjacent entries in columns are Ph-nondecreasing.

•Ph-tableaux were used by Gasharov to show that XGh
(x; q) is Schur-positive for any

Hessenberg function h. [3]

Theorem 4. If h = (h(1), n, . . . , n), then there is a bijection between the set of monomials
in set B1 and the set of Ph-tableaux with shape (1n).
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Theorem 5. If h = (h(1), n, . . . , n), then there is bijection between the set of monomials in
set B2 and the set of pairs of Ph-tableaux and standard tableaux, both with shape (2, 1n−2).

x25 x3 (y3 − y1) ⇒ 5
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Positivity in the elementary basis

• Stanley [6] showed that graphs with independence number 1 or 2 are e-
positive. When h = (h(1), n, . . . , n), the vertices 2, . . . , n in Gh form a
clique, so these graphs are in that category.

• We give another proof of this fact from the Hessenberg variety: Theorem
3 says that H∗(Hess(S, h)), as an Sn-module, forms a permutation repre-
sentation.

• The Frobenius character of a permutation representation is the complete
homogeneous symmetric function hλ, and applying the involution ω gives
an e-positive expansion of XGh

(x; q) for this Hessenberg function.
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