Monomial expansions for q-Whittaker and modified Hall-Littlewood polynomials

Aritra Bhattacharya TV Ratheesh Sankaran Viswanath
The Institute of Mathematical Sciences, A Cl of Homi Bhabha National Institute, Chennai 600113, India

Let λ be a partition. For $n \geq 1$, let X_{n} denote the tupluction
 polynomial $W_{\lambda}\left(X_{n} ; q\right.$) and the modififed Hall-Littlewood polynomial $Q_{\lambda}^{\prime}\left(X_{n} ; q\right)$ are well-studied specialization x_{1}, x_{n}, x_{n}.
of the modified Macconald polynomial. In this article our focis will be on three monomial expansions the of the modified Macdonald polynomial. In this article, our focus will be on three monomial expansions: the of the formulas of Haglund-Haiman-Loohr [2] and Ayyer-Mandelshtam-Martin [1].
Given λ let dg (λ) be its Young diagram. Fix $n>1$, and let $\mathcal{F}(\lambda)$ denote the set
$\begin{aligned} & \text { F: } \operatorname{dg}(\lambda) \rightarrow[n] \text { where }[n]=\{1,2, \cdots, n\} \\ & \bullet \text { For } \lambda=(6,4,2) \text {, and } n=8 \text { following is a filing of } \operatorname{dg}(\lambda)\end{aligned}$

Following Haglund-Haiman-Loehr [2] and Ayyer-Mandelshtam-Martin [1], there are statistics inv, quinv
and maj on $\mathcal{F}(\lambda)$ such that

$$
\widetilde{H}_{\lambda}\left(X_{n} ; q, t\right)=\sum_{F \in \mathcal{F}(\lambda)} x^{F} q^{\nu(F)} t^{m i d}(F)
$$

where $\boldsymbol{v} \in\left\{\right.$ inv, quinv\}. Expand $\widetilde{\mathcal{H}}_{\lambda}\left(X_{n} ; q, t\right)$ in powers of t; our interest lies in the coefficients of the lowes and highest powers [8, (3.1)):
$\tilde{H}_{\lambda}\left(X_{n} ; q, t\right)=\mathcal{H}_{\lambda}\left(X_{n} ; q\right) t^{0}+\cdots+W_{\lambda}\left(X_{n} ; q\right) t^{\eta(\lambda)}$
Column strict filling (CSF)

- A filling F is a column strict, if the values of F strictly increase down each column. Let $\operatorname{CSF}(\lambda)$ denotes the collection of all column strict fillings of shape λ.
Let $F \in \mathcal{F}(\lambda)$. Then $\operatorname{maj}(F)=\eta(\lambda)$ iff $F \in \operatorname{CSF}(\lambda)$.
- From (1), we obtain for $v \in\{$ \{inv, quinv $\}$

$$
W_{\lambda}\left(X_{n} ; q\right)=\sum_{F \in \operatorname{CSF}(\lambda)} x^{F} q^{q(F)}
$$

- Let $n \geq 1$ and $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right)$ bea partition with at most n nonzero parts. Let GT(λ) denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding row λ. Given $T \in$ GT(λ), we denote its entries by T_{i}^{j} for $1 \leq i \leq j \leq n$ as in Figure 1 .
- Define the North-East and South-East differences of T by: $\mathrm{NE}_{j i}(T)=T_{i}^{j+1}-T_{i}^{j}$ and $\mathrm{SE}_{j j}(T)=T_{i}^{j}-T_{i+1}^{j}$ for $1 \leq i \leq(j+1) \leq n$
- A partition overlaid pattern (POP) of shape λ is a pair (T, Λ), where $T \in \operatorname{GT}(\lambda)$ and $N E_{j}(T) \times S E_{i}(T)$. Let POP (λ) denotes the set of all partition overlaid patterns of shape λ - The q-Whittaker polynomial can be expressed as

$$
W_{\lambda}\left(X_{n} ; q\right)=\sum_{(T, N \in \operatorname{POP}(\lambda)} x^{T} q^{|\Lambda|}
$$

where $|\Lambda|=\sum_{i, j}\left|\Lambda_{i j}\right|$.

Figure 1: A GT-pattern for $n=4$. On the right is a partition overlay compatible with this GT-pattern Projection and Branching for Partition overlaid patterns \bullet Given λ, we
$1 \leq i<n$.

- The q-Whittaker polynomials have the following important properties which readily follow from (4) i (projection) $W_{\lambda}\left(X_{n} ; q=0\right)=s_{\lambda}\left(X_{n}\right)$, the Schur polynomial.
ii (branching) $W_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}=1 ; q\right)=\sum_{\mu<\lambda 1 \leq i<n} \prod_{\substack{\lambda_{i}-\lambda_{i+1} \\ \lambda_{i}-\mu_{i} \\ i}} \cdot W_{\mu}\left(X_{n-1} ; q\right)$

The combinatorial shadow of projection is the map pr: $\operatorname{POP}(\lambda) \rightarrow \operatorname{GT}(\lambda)$ given by $\operatorname{pr}(T, \Lambda)=T$. - Define combinatorial branching to be the map br: $\operatorname{POP}(\lambda) \rightarrow \bigsqcup_{\mu \leftharpoonup \lambda} \operatorname{POP}(\mu)$ defined by $\operatorname{br}(T, \Lambda)=\left(T^{\dagger}, \Lambda^{\dagger}\right)$ where T^{\dagger} is obtained from T by deleting its bottom row, and Λ^{\dagger} is obtained from \wedge by deleting the overlays $\Lambda_{i j}$ with $j=n-1$.

- $\operatorname{For}(T, \Lambda) \in \operatorname{POP}(\lambda)$, define $\operatorname{boxcomp}(T, \Lambda)=\left(T, \Lambda^{c}\right)$ where for each $i, j,\left(\Lambda^{c}\right){ }_{j i}$ is defined to be the complement of $\Lambda_{i j}$ in its bounding rectangle of size $\mathrm{NE}_{j i}(T) \times \mathrm{SE}_{j}(T)$.

Projection and branching for Column strict fillings

- Given $F \in \operatorname{CSF}(\lambda)$, let rsort($(F) \in \operatorname{SSYT}(\lambda) \cong \operatorname{GT}(\lambda)$, denote the filling obtained from F by sorting entric of each row in ascending order. we think of rsort as the projection map in the CSF setting.
Let $\ell \geq 1$ and suppose $\sigma=\left(\sigma_{1}<\sigma_{2}<\cdots<\sigma_{\ell-1}\right)$ and $\tau=\left(\tau_{1}<\tau_{2}<\cdots<\tau_{\ell}\right)$ are column tuples of
length $\ell-1$ and ℓ respectively. We set $\sigma_{0}=0$ and let k denote the maximum element of the (non-empt set $\left\{1 \leq i \leq \ell: \sigma_{i-1}<\tau_{i}\right\}$

Define splice $(\sigma, \tau)=(\bar{\sigma}, \bar{\tau})$ where
$\bar{\sigma}_{i}=\left\{\begin{array}{ll}\sigma_{i} & 1 \leq i<k \\ \tau_{i} & k \leq i \leq \ell\end{array} \quad\right.$ and $\quad \bar{\tau}_{i}= \begin{cases}\tau_{i} & 1 \leq i<k \\ \sigma_{i} & k \leq i<\ell\end{cases}$
For instance when $(\sigma, \tau)=\left(\frac{1}{5},, \frac{2}{3}\right)$, we get $(\bar{\sigma}, \bar{\tau})=\left(\frac{1}{3}, \frac{2}{5}\right)$.

For instance when $(\sigma, \tau)=\left(\underset{\frac{1}{5}}{5}, \frac{2}{\frac{3}{4}}\right)$, we get $(\bar{\sigma}, \bar{\tau})=\left(\underset{\frac{1}{3}}{\frac{1}{4}}, ~, \frac{2}{5}\right)$.
The delete-and-splice rectification ("dsplice") map on $F \in \stackrel{4}{\operatorname{CS}} \mathrm{CSF}(\lambda)$ is defined as follows: i delecte all cells in F containing the entry n and let F^{\dagger} denote the resulting filling. While its column entries remain strictly increasing, Ff † may no longer be of partition shape. ${ }^{\dagger}$. . and $n-1$), which we denote asplicece(F). The following properties hold

Proposition 1

With notation as above: (i) $D:=\mathrm{dsplice}(F)$ is independent of the intermediate choices of columns in tep 2 of the procedure. (ii) rsort((D) is obtained from rsort(F) by deleting the cells containing the entry (iii) If μ and λ are the shapes of D and F respectively, then $\mu<\lambda$.

We consider dsplice to be the combinatorial branching map in the CSF context

Main Theorem

For any $n \geq 1$ and any partition $\lambda: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ with at most n nonzero parts, there exist two bijections $\psi_{\text {inv }}$ and $\psi_{\text {quinv }}$ from $\operatorname{CSF}(\lambda)$ to $\operatorname{POP}(\lambda)$ with the following properties:

1. If $\psi_{v}(F)=(T, \Lambda)$, then $x^{F}=x^{T}$ and $v(F)=|\Lambda|$, for $v=$ inv or quinv.
2. The following diagrams commute ($v=$ inv or quinv)
(B)

3. The two bijections are related via the commutative diagram:

$$
\begin{aligned}
& \operatorname{CSF}(\lambda) \\
& \operatorname{POP}(\lambda) \xrightarrow{y_{\text {inv }}} \xrightarrow[\text { bexcomp }]{\psi_{\text {miniv }}} \operatorname{POP}(\lambda)
\end{aligned}
$$

- Let cells $(i, j, F)=\left\{c \in \operatorname{dg}(\lambda): c\right.$ is in the $i^{\text {th }}$ row and $\left.F(c)=j+1\right\}$ for $1 \leq i \leq j+1 \leq n$

It follows that \mid cells $(i, j, F) \mid=N E_{i j}(T)$, where $T=\operatorname{rsort}(F)$.
If $c, d \in \operatorname{cels}(i, j)$) wh c lying $) \leq \mathrm{SE}_{j}(T)$
$F \in \operatorname{CSF}(1) T=1(F)$. $1 \leq$, then $\operatorname{zcount}(c, F) \geq \operatorname{zcount}(d, F)$
est $F \in \operatorname{CSF}(\lambda)$ and $T=\operatorname{rsort}(F)$. For each $1 \leq i \leq j+1 \leq n$, consider the sequence
$\Lambda_{i j}=(z \operatorname{count}(c, F): c \in \operatorname{cells}(i, j, F)$ traversed right to left in row $i)$.
Define
$\psi_{\text {quinv }}(F)=(T, \Lambda)$,
where $\Lambda=\left(\Lambda_{i j}: 1 \leq i \leq j<n\right)$, then $(T, \Lambda) \in \operatorname{POP}(\lambda)$. Clearly, $x^{F}=x^{T}$ and (5) implies quinv $(F)=|\Lambda|$.

Figure e 2 : Here $F \in \operatorname{CSF}(\lambda)$ for $\lambda=(10,6,4,0)$ and $n=4$. Cells of F are coloured acording to their entries. The gray cells
are the extra cells in the augmented diagram dg(λ. On the right are cellwise zount values. Here quinv(F) $=12$.

Definition of $\psi_{\text {inv }}$

Given $F \in \operatorname{CSF}(\lambda)$ and $c \in \operatorname{dg}(\lambda)$, define $\overline{z \operatorname{zount}}(c, F)=$ the number of refinv-triples (x, y, z) in F with $=c$. In light of Proposition 2, it is clear that

$$
\sum_{c \in \operatorname{ddg}(\lambda)} \overline{\operatorname{count}(}(c, F)=\operatorname{inv}(F)
$$

We have the following relation between $\frac{c}{\text { zeount }}$ and zoount
Proposition 3
Let $F \in \operatorname{CSF}(\lambda)$ and $T=\operatorname{rsort}(F)$. Let $1 \leq i \leq j+1 \leq n$ and $c \in \operatorname{cells}(i, j, F)$. Then
$\operatorname{count}(c, F)+\overline{\operatorname{count}}(c, F)=\operatorname{SE}_{j j}(T)$.
Given $F \in \operatorname{CSF}(\lambda)$, let $T=\operatorname{rsort}(F)$. For each $1 \leq i \leq j<n$, consider the sequence.

$$
\bar{\Lambda}_{i j}=(\overline{\overline{c o u n t}}(c, F): \quad c \in \operatorname{cells}(i, j, F) \text { traversed left to right in row } i)
$$

It follows from Proposition 3 that $\bar{\Lambda}_{i j}$ is the box-complement of $\Lambda_{j i}$ in the $\mathrm{NE}_{j j}(T) \times \mathrm{SE}_{j j}(T)$ rectangle. Let $\bar{\Lambda}=\left(\bar{\Lambda}_{i j}: 1 \leq i \leq j<n\right)$, we define $\psi_{\text {inv }}(F)=(T, \bar{\Lambda})$. We have $x^{F}=x^{T}$, and inv $(F)=|\bar{\Lambda}|$. Construction of $\psi_{\text {inv }}^{-1}$ and $\psi_{\text {quinv }}^{-1}$
Given $(T, \Lambda) \in \operatorname{POP}(\lambda)$, construct the filling $F:=\psi_{\text {inv }}^{-1}(T, \Lambda) \in \operatorname{CSF}(\lambda)$ inductively row-by-row, from the bottom ($\left.n^{\text {th }}\right)$ row to the top as follows:
(a) fill all cells of the $n^{\text {th }}$ row (if nonempty) with n
(b) let $1 \leq i \leq j<n$; assuming that all rows of F strictly below row i have been completely determined and that the locations of entries $>(j+1)$ in row i have been determined, we now need to fill $\mathrm{NE}_{j}(T)$ many
cells of row i with the entry $j+1$. It turns out that the number of cells in row i in which we can potentially cells of row $\boldsymbol{\text { with the entry } ~} j+1$. It turns out that the number of cells in row i in which we can pot
put a $j+1$ without violating the CSF condition thus far is exactly $k+\ell$ where $k=\mathrm{NE} \mathrm{E}_{j}(T)$ and $\ell=\mathrm{SE}_{j j}(T)$. We label these cells $0,1, \cdots, k+\ell-1$ from right to left (left-to-right when defining $\psi_{\text {quinv }}^{-1}$). The partition \wedge_{j} can be viewed as a k-tuple of candidate cells in row i; we put the entry $j+1$ into these, (c) fill the remaining cells of row i with the entry i.
Let $n=4, \lambda=(10,6,4,0)$ and let T, Λ be the GT pattern and overlay depicted in Figure 1 . The $\psi_{\text {quiv }}^{-1}(\mathcal{T}, \Lambda)$ is precisely the CSF F of Figure 2 , while

Local Weyl modules and limit constructions

we deduce
$n \geq 2$ and consider the partition $\theta=(2,1,1, \cdots, 1,0)$ with $n-1$ nonzero parts and $|\theta|=n$. For $k \geq 0$, let \mathcal{C}_{k} denote the set of CSFs F of shape $k \theta$ and entries in [n], with the property that either 1 occurs in the first column of
equals the character of $L\left(\Lambda_{0}\right)$.

For the modified Hall-Littlewood polynomials $Q^{\prime}(X)$ Remarks
 Analogous to (4), this can now be recast as a weighted sum over partition overlaid plane-partitions (POPP) of shape λ. Min Theorem takes the form of bijections from $\operatorname{WDF}(\lambda)$ to $\operatorname{POPP}(\lambda)$ (or equivalent from tabloids to partition overlaid reverse-plane-partitions)
ve for the modified Hall-Littlewood case) have an attractive interpretation in terms of lattice-path diagrams.
References
(11) Arvind Ayyer. Olyy Mandelstham, and James B. Martin. Modififed
(2.2 J H Haglund, M. Haiman, and N. Loohr. "AA combinatorial formula for Macdonald polynomials". In: J. Amer. Math. Soc. 18.3 (2005), pp.

5J V. G. Kac. Infinited dimensional Lie algebras. 3rde dition. Cambridge University Press, 1990.
-0. Viayanthic Chari and Sergei Loktev.

88 F. Bergeron. A Survey of q-Whitalaer polynomials. 2000. arxiv: 2006 . 12591 [math.CC]

