Monomial expansions for g-Whittaker and modified Hall-Littlewood polynomials

Introduction
Let A be a partition. For n > 1, let X, denote the tuple of indeterminates xq, xo, - - - , x,. The g-Whittaker

polynomial W)(X,; g) and the modified Hall-Littlewood polynomial Q}(X,; q) are well-studied specializations
of the modified Macdonald polynomial. In this article, our focus will be on three monomial expansions: the
so-called fermionic formulas [4, (0.2), (0.3)] and the inv- and quinv-expansions arising from specializations
of the formulas of Haglund-Haiman-Loehr 2] and Ayyer-Mandelshtam-Martin [1].

o Given A, let dg(\) be its Young diagram. Fix n > 1, and let F () denote the set of all maps (“fillings”)
F :dg(\) — [n] where [n] = {1,2,--- ,n}
@ For A = (6,4,2) , and n = 8 following is a filling of dg(\)

F —[1]3]5]5]6]8
2[4 [2]7
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Following Haglund-Haiman-Loehr [2] and Ayyer-Mandelshtam-Martin [1], there are statistics inv, quinv
and mag on F(\) such that

ﬁ)\(Xn; g, t) _ Z Xqu(F)tmaj(F) (1>
FeF(A)

where v € {inv, quinv}. Expand I:I/A(Xn; g, t) in powers of t; our interest lies in the coefficients of the lowest
and highest powers |8, (3.1)]:

Ha(Xoi 4, t) = Ha(Xos @)t + -+ - + WA(Xy; )t 2)]

Column strict filling (CSF)
o A filling F is a column strict, if the values of F strictly increase down each column. Let CSF(\) denotes
the collection of all column strict fillings of shape A.

o Let F € F(A). Then maj(F) = n(X) iff F € CSF(\).
@ From (1), we obtain for v € {inv, quinv}:

W(Xiq)= > xfq') (3)
FeCSF(\)

Partition overlaid pattern

elet n>1and A= (A > Ay > --- > X, > 0) be a partition with at most n nonzero parts. Let GT()\)
denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding row A. Given T € GT(\), we
denote its entries by T,-j for 1 < i <j < nasin Figure 1.

o Define the North-East and South-East differences of T by: NE;(T) = T/*' — T/ and SE;(T) = T/ — Tifill
for 1<i<(j+1) <n

o A partition overlaid pattern (POP) of shape X is a pair (T, A), where T € GT()\) and
N=(Nj:1<i<j<n)isa tuple of partitions such that each Aj fits into a rectangle of size
NE;(T) x SE;(T). Let POP(\) denotes the set of all partition overlaid patterns of shape A.

@ The g-Whittaker polynomial can be expressed as
Wi(Xnq)= Y  x'g" (4)

(T, A)ePOP())
where [A| = |Ayl.
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Figure 1: A GT-pattern for n = 4. On the right is a partition overlay compatible with this GT-pattern.

10 6 4 0

Projection and Branching for Partition overlaid patterns
o Given A, we say that u = (u1, to, - -, tn—1) interlaces A (and write p < \) if \; > p; > Ajoq for
1 <i<n.
@ The g-Whittaker polynomials have the following important properties which readily follow from (4)
| (projection) Wi(Xy;, g = 0) = sy(X,), the Schur polynomial.

Ai — A
i (branching) Wa(xi, x, + -+, Xp—1, % = 1, q) = Z H [ A .

<\ 1<i<n b T Hi
@ The combinatorial shadow of projection is the map pr : POP(\) — GT()\) given by pr(T,A) = T.
o Define combinatorial branching to be the map br : POP(A) — | |, ., POP(u) defined by
br(T,A) = (TT,AT) where T is obtained from T by deleting its bottom row, and AT is obtained from A by
deleting the overlays Aj; with j = n —1.
o For (T,A) € POP()), define boxcomp(T,A) = (T,A°) where for each i, j, (A€); is defined to be the
complement of Aj in its bounding rectangle of size NE;(T) x SE;(T).

| W00

Projection and branching for Column strict fillings
o Given F € CSF()), let rsort(F) € SSYT(A) = GT()\), denote the filling obtained from F by sorting entries
of each row in ascending order. we think of rsort as the projection map in the CSF setting.
@ Let £ >1and suppose 0 = (01 < 0x < --- < oypq)and 7 = (1 < T < --- < 7y) are column tuples of
length ¢ — 1 and ¢ respectively. We set o9 = 0 and let k denote the maximum element of the (non-empty)
set {1 <i</l:0/1<T}
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@ Define splice(o, 7) = (7, 7) where

.
o o, 1<i<k . T
g; = < » and T =

For instance when (o, 7) = ( é , g ), we get (,7) = ( ; , ; ).
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@ The delete-and-splice rectification (“dsplice”) map on F € CSF()) is defined as follows:
i delete all cells in F containing the entry n and let FT denote the resulting filling. While its column entries remain strictly
increasing, FT may no longer be of partition shape.
i Applying splice map between appropriate columns FT we can produces a CSF of partition shape (filled by numbers between 1
and n — 1), which we denote dsplice(F). The following properties hold:

Proposition 1
With notation as above: (i) D := dsplice(F) s independent of the intermediate choices of columns in

step 2 of the procedure. (i) rsort(D) is obtained from rsort(F) by deleting the cells containing the entry
n. (iti) If u and X\ are the shapes of D and F respectively, then u < \.

We consider dsplice to be the combinatorial branching map in the CSF context.

Main Theorem

For any n > 1 and any partition A : Ay > A» > --- > X, > 0 with at most n nonzero parts, there exist
two bijections ¥in, and tquiny from CSF(A) to POP(A) with the following properties:

1. If 9, (F) = (T,N), then x© = x" and v(F) = |A|, for v = inv or quinv.

2. The following diagrams commute (v = inv or quinv):

(A)

)

CSF()) V > POP()\)
GT(N)
(B)
CSF(\) v . POP())
dsplicel lbr
| | CSF() - > | | POP(p)
p=A U=

3. The two bijections are related via the commutative diagram:

CSF())

=

boxcomp . POP()\)

POP()\)

Proof sketch

@ For a partition A, the augmented diagram dAg()\) is dg(\) together with one additional cell below the last
cell in each column.

o Given F € CSF()), a quinv-triple (resp. refinv-triple ) in F is a triple of cells (x, y, z) in dg()\) such that
(i) x,z € dg(\) and z is to the right (resp. to the left ) of x in the same row, (ii) y is the cell immediately
below x in its column, (iii) F(x) < F(z) < F(y), where we set F(y) = oo if y lies outside dg(\).

@ The quinv-triples considered in [1] for F € F(\) reduce to this description when F is a CSF rather than a
general filling.

Proposition 2

For F € CSF(A), inv(F) equals the number of refinv-triples of F.

Definition of g,
e Given F € CSF(\), for each cell ¢ € dg(\), let zcount(c, F) = the number of quinv-triples (x, y, z) in F
with z = c¢. Clearly

Z zcount(c, F) = quinv(F). (5)
cedg(N)
o Let cells(i, j, F) = {c € dg()\) : cisin the i tow and F(c) =j+ 1} for 1 <i<j+1<n.
o It follows that |cells(i,j, F)| = NE;(T), where T = rsort(F).
o If ¢ € cells(i,j, F), then zcount(c, F) < SE;(T).
o If c,d € cells(i, j, F) with ¢ lying to the right of d, then zcount(c, F) > zcount(d, F).

Let F € CSF(\) and T = rsort(F). For each 1 < <j+ 1 < n, consider the sequence
Nj = (zcount(c, F) : ¢ € cells(i, j, F) traversed right to left in row 7). (6)

Define
77DCIU/I7V(":) — (Ta /\)7

where A = (A; : 1 < i <j < n), then (T,A) € POP()). Clearly, x© = x" and (5) implies quinv(F) = |A|.

F — 2[]2[1]2]4]4]3 zcount(+, F) = oJo]1]0]2]1]1]2
2[2]3]3]3]4 o[o[ojofo]1
3[3]4]4 0[o[2]2

Figure 2: Here F € CSF(A) for A = (10,6,4,0) and n = 4. Cells of F are coloured according to their entries. The gray cells
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are the extra cells in the augmented diagram dg(\). On the right are cellwise zcount values. Here quinv(F) = 12.

Definition of v,
Given F € CSF(A) and ¢ € dg(\), define zcount(c, F) = the number of refinv-triples (x, y, z) in F with
z = c. In light of Proposition 2, it is clear that

Z zcount(c, F) = inv(F) (7)

cedg(N)

We have the following relation between zcount and zcount:
Proposition 3

Let F € CSF(A) and T =rsort(F). Let 1 <i<j+1<n and c € cells(i,j, F). Then
zcount(c, F) + zcount(c, F) = SE;(T).

Given F € CSF(A), let T = rsort(F). For each 1 < i < j < n, consider the sequence:
A; = (zcount(c, F) :

It follows from Proposition 3 that Aj is the box-complement of A; in the NE;(T) x SE;(T) rectangle.
Let A= (A; : 1 <i<j< n), we define ¢y (F) = (T,N). We have x© = xT, and inv(F) = |A.

c € cells(/, j, F) traversed left to right in row i)

Construction of @b—l and @D_l

inv quinv
Given (T,A) € POP()), construct the filling F := ¢ 1(T,A\) € CSF()) inductively row-by-row, from the
bottom (n™) row to the top as follows:
(a) fill all cells of the n®" row (if nonempty) with n,

(b) let 1 < i < j < n; assuming that all rows of F strictly below row i have been completely determined
and that the locations of entries > (j + 1) in row 7/ have been determined, we now need to fill NE;( T) many
cells of row i with the entry j 4+ 1. It turns out that the number of cells in row /7 in which we can potentially
put a j + 1 without violating the CSF condition thus far is exactly k + ¢ where k = NE;( T) and

¢ = SE;(T). We label these cells 0,1,--- , k 4+ ¢ — 1 from right to left (left-to-right when defining @D;}inv).
The partition Aj can be viewed as a k-tuple of candidate cells in row i; we put the entry j + 1 into these,

(¢) fill the remaining cells of row 7 with the entry /.

Let n =4, A\ =(10,6,4,0) and let T, A be the GT pattern and overlay depicted in Figure 1. Then
Yt (T, N) is precisely the CSF F of Figure 2, while

quinv
“L7 N) = [2]1]1]1]3]2]1]4]4]>2
Vi T> ) 3[3[2[2[4]3
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Local Weyl modules and limit constructions
Using Theorem 1 to replace POPs with CSFs as our model in |7, Corollary 5.13], we deduce :

Proposition 4
Fiz n > 2 and consider the partition 0 = (2,1,1,--- ,1,0) with n — 1 nonzero parts and |0| = n. For

k >0, let Cx denote the set of CSFs F of shape k6 and entries in [n], with the property that either 1

occurs in the first column of F or 1 does not occur in its last column. Then ) - ree, xF qkz—i“V(F)

equals the character of L(Ny).

Concluding Remarks
e For the modified Hall-Littlewood polynomials Q3,(Xy; q) of (3), the fermionic formula appears in |4, (0.2)].
Analogous to (4), this can now be recast as a weighted sum over partition overlaid plane-partitions
(POPP) of shape A. Min Theorem takes the form of bijections from WDF(A) to POPP(A) (or equivalently,

from tabloids to partition overlaid reverse-plane-partitions).

@ The bijections of Theorem 1 (and those indicated above for the modified Hall-Littlewood case) have an
attractive interpretation in terms of lattice-path diagrams.
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