Introduction

Let λ be a partition. For $n \geq 1$, let X_n denote the tuple of indeterminates x_1, x_2, \dots, x_n . The q-Whittaker polynomial $W_{\lambda}(X_n; q)$ and the modified Hall-Littlewood polynomial $Q'_{\lambda}(X_n; q)$ are well-studied specializations of the modified Macdonald polynomial. In this article, our focus will be on three monomial expansions: the so-called *fermionic formulas* [4, (0.2), (0.3)] and the inv- and quinv-expansions arising from specializations of the formulas of Haglund-Haiman-Loehr [2] and Ayyer-Mandelshtam-Martin [1].

- Given λ , let $dg(\lambda)$ be its Young diagram. Fix $n \geq 1$, and let $\mathcal{F}(\lambda)$ denote the set of all maps ("fillings") $F: dg(\lambda) \rightarrow [n]$ where $[n] = \{1, 2, \cdots, n\}$
- For $\lambda = (6, 4, 2)$, and n = 8 following is a filling of $dg(\lambda)$

$$F = \begin{bmatrix} 1 & 3 & 5 & 5 & 6 & 8 \\ 2 & 4 & 2 & 7 \\ 3 & 1 \end{bmatrix}$$

Following Haglund-Haiman-Loehr [2] and Ayyer-Mandelshtam-Martin [1], there are statistics *inv*, *quinv* and maj on $\mathcal{F}(\lambda)$ such that

$$\widetilde{H}_{\lambda}(X_n; q, t) = \sum_{F \in \mathcal{F}(\lambda)} x^F q^{v(F)} t^{\mathsf{maj}(F)}$$

where $v \in \{inv, quinv\}$. Expand $H_{\lambda}(X_n; q, t)$ in powers of t; our interest lies in the coefficients of the lowest and highest powers [8, (3.1)]:

$$\mathcal{H}_{\lambda}(X_n; q, t) = \mathcal{H}_{\lambda}(X_n; q)t^0 + \cdots + \mathcal{W}_{\lambda}(X_n; q)t^{\eta(\lambda)}$$

Column strict filling (CSF)

- A filling F is a *column strict*, if the values of F strictly increase down each column. Let $CSF(\lambda)$ denotes the collection of all column strict fillings of shape λ .
- Let $F \in \mathcal{F}(\lambda)$. Then $\mathsf{maj}(F) = \eta(\lambda)$ iff $F \in \mathrm{CSF}(\lambda)$.
- From (1), we obtain for $v \in \{inv, quinv\}$:

$$W_{\lambda}(X_n; q) = \sum_{F \in \mathrm{CSF}(\lambda)} x^F q^{v(F)}$$

Partition overlaid pattern

- Let $n \ge 1$ and $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0)$ be a partition with at most *n* nonzero parts. Let $GT(\lambda)$ denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding row λ . Given $T \in GT(\lambda)$, we denote its entries by T_i^j for $1 \le i \le j \le n$ as in Figure 1.
- Define the North-East and South-East differences of T by: $NE_{ij}(T) = T_i^{j+1} T_i^j$ and $SE_{ij}(T) = T_i^j T_{i+1}^{j+1}$ for $1 \leq i \leq (j+1) \leq n$.
- A partition overlaid pattern (POP) of shape λ is a pair (T, Λ) , where $T \in GT(\lambda)$ and $\Lambda = (\Lambda_{ij} : 1 \le i \le j < n)$ is a tuple of partitions such that each Λ_{ij} fits into a rectangle of size $NE_{ij}(T) \times SE_{ij}(T)$. Let POP(λ) denotes the set of all partition overlaid patterns of shape λ .
- The q-Whittaker polynomial can be expressed as

$$W_{\lambda}(X_n; q) = \sum_{(T,\Lambda)\in \text{POP}(\lambda)} x^T q^{|\Lambda|}$$

where $|\Lambda| = \sum_{i,j} |\Lambda_{ij}|$.

Figure 1: A GT-pattern for n = 4. On the right is a partition overlay compatible with this GT-pattern.

- **Projection and Branching for Partition overlaid patterns** • Given λ , we say that $\mu = (\mu_1, \mu_2, \cdots, \mu_{n-1})$ interlaces λ (and write $\mu \prec \lambda$) if $\lambda_i \ge \mu_i \ge \lambda_{i+1}$ for $1 \le i < n$.
- The q-Whittaker polynomials have the following important properties which readily follow from (4) $i(projection) W_{\lambda}(X_n; q = 0) = s_{\lambda}(X_n)$, the Schur polynomial.

$$\text{ii (branching)} \ W_{\lambda}(x_1, x_2, \cdots, x_{n-1}, x_n = 1; q) = \sum_{\mu \prec \lambda} \prod_{1 \leq i < n} \begin{bmatrix} \lambda_i - \lambda_{i+1} \\ \lambda_i - \mu_i \end{bmatrix}_q \cdot W_{\mu}(X_{n-1}; q)$$

- The combinatorial shadow of projection is the map $pr : POP(\lambda) \to GT(\lambda)$ given by $pr(T, \Lambda) = T$.
- Define *combinatorial branching* to be the map $\mathbf{br} : \mathrm{POP}(\lambda) \to \bigsqcup_{\mu \prec \lambda} \mathrm{POP}(\mu)$ defined by $br(T, \Lambda) = (T^{\dagger}, \Lambda^{\dagger})$ where T^{\dagger} is obtained from T by deleting its bottom row, and Λ^{\dagger} is obtained from Λ by deleting the overlays Λ_{ij} with j = n - 1.
- For $(T, \Lambda) \in \text{POP}(\lambda)$, define $\text{boxcomp}(T, \Lambda) = (T, \Lambda^c)$ where for each $i, j, (\Lambda^c)_{ij}$ is defined to be the complement of Λ_{ii} in its bounding rectangle of size $NE_{ii}(T) \times SE_{ii}(T)$.

Projection and branching for Column strict fillings

- Given $F \in CSF(\lambda)$, let $rsort(F) \in SSYT(\lambda) \cong GT(\lambda)$, denote the filling obtained from F by sorting entries of each row in ascending order. we think of **rsort** as the projection map in the CSF setting.
- Let $\ell \geq 1$ and suppose $\sigma = (\sigma_1 < \sigma_2 < \cdots < \sigma_{\ell-1})$ and $\tau = (\tau_1 < \tau_2 < \cdots < \tau_{\ell})$ are column tuples of length $\ell - 1$ and ℓ respectively. We set $\sigma_0 = 0$ and let k denote the maximum element of the (non-empty) set $\{1 \leq i \leq \ell : \sigma_{i-1} < \tau_i\}.$

Monomial expansions for q-Whittaker and modified Hall-Littlewood polynomials

Aritra Bhattacharya TV Ratheesh Sankaran Viswanath The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai 600113, India

$$\overline{\sigma}_{i} = \begin{cases} \sigma_{i} & 1 \leq i < k \\ \tau_{i} & k \leq i \leq \ell \end{cases} \text{ and}$$
$$\tau_{i}, \tau_{i} = (1, 2), \text{ we get } (\overline{\sigma}, \overline{\tau}) = (1, 2) \end{cases}$$

$$\psi_{quinv}(F) = (T, \Lambda),$$

(3)

Example
$ = \frac{0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 2 \ 1 \ 1 \ 2}{0 \ 0 \ 0 \ 0 \ 1} $
d $n = 4$. Cells of F are coloured according to their entries. The gray cells). On the right are cellwise zcount values. Here $quinv(F) = 12$.
Definition of ψ_{inv}
$\overline{\operatorname{punt}}(c,F) = \operatorname{the number of refinv-triples}(x,y,z) \text{ in } F \text{ with at}$
$\sum_{(\lambda)} \overline{\operatorname{zcount}}(c, F) = \operatorname{inv}(F) $ (7)
nt and zcount:
$i \leq j+1 \leq n \text{ and } c \in \text{cells}(i, j, F). Then$
each $1 \leq i \leq j < n$, consider the sequence:
$\in \operatorname{cells}(i, j, F)$ traversed left to right in row i)
e box-complement of Λ_{ij} in the $NE_{ij}(T) \times SE_{ij}(T)$ rectangle. $hv(F) = (T, \overline{\Lambda})$. We have $\mathbf{x}^F = \mathbf{x}^T$, and $inv(F) = \overline{\Lambda} $.
$uction of y/z^{-1}$ and y/z^{-1}
$F := \psi_{inv}^{-1}(T, \Lambda) \in \mathrm{CSF}(\lambda)$ inductively row-by-row, from the
) with n , we of F strictly below row i have been completely determined in row i have been determined, we now need to fill $NE_{ij}(T)$ many out that the number of cells in row i in which we can potentially dition thus far is exactly $k + \ell$ where $k = NE_{ij}(T)$ and $k + \ell - 1$ from right to left (left-to-right when defining ψ_{quinv}^{-1}). le of candidate cells in row i ; we put the entry $j + 1$ into these, e entry i .
Example
e the GT pattern and overlay depicted in Figure 1. Then are 2, while
$ \Lambda) = \begin{bmatrix} 2 & 1 & 1 & 1 & 3 & 2 & 1 & 4 & 4 & 2 \\ \hline 3 & 3 & 2 & 2 & 4 & 3 \\ \hline 4 & 4 & 3 & 3 \end{bmatrix} $
odules and limit constructions s as our model in [7, Corollary 5.13], we deduce :
2,1,1,,1,0) with $n-1$ nonzero parts and $ \theta = n$. For shape $k\theta$ and entries in $[n]$, with the property that either 1 not occur in its last column. Then $\sum_{k\geq 0} \sum_{F\in \mathcal{C}_k} x^F q^{k^2-inv(F)}$
ncluding Remarks
als $Q'_{\lambda'}(X_n; q)$ of (3), the fermionic formula appears in [4, (0.2)].

s a weighted sum over partition overlaid plane-partitions he form of bijections from $WDF(\lambda)$ to $POPP(\lambda)$ (or equivalently, plane-partitions).

dicated above for the modified Hall-Littlewood case) have an e-path diagrams.

References

"Modified Macdonald polynomials and the multispecies zero-range process. I". 2589-5486

l formula for Macdonald polynomials". In: J. Amer. Math. Soc. 18.3 (2005), pp.

ials. Second edition. Oxford Mathematical Monographs. Oxford University Press, New

ified Hall- Littlewood polynomials". English. In: q-series from a contemporary 83–333. isbn: 0-8218-1150-9.

. Cambridge University Press, 1990.

and fusion modules for the current algebra of slr+1". English. In: Adv. Math. 207.2

"On Chari- Loktev bases for local Weyl modules in type A". English. In: J. Comb.

. arXiv: 2006. 12591 [math.CO].