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Introduction
Let λ be a partition. For n ≥ 1, let Xn denote the tuple of indeterminates x1, x2, · · · , xn. The q-Whittaker
polynomial Wλ(Xn; q) and the modified Hall-Littlewood polynomial Q ′

λ(Xn; q) are well-studied specializations
of the modified Macdonald polynomial. In this article, our focus will be on three monomial expansions: the
so-called fermionic formulas [4, (0.2), (0.3)] and the inv- and quinv-expansions arising from specializations
of the formulas of Haglund-Haiman-Loehr [2] and Ayyer-Mandelshtam-Martin [1].

Given λ, let dg(λ) be its Young diagram. Fix n ≥ 1, and let F(λ) denote the set of all maps (“fillings”)
F : dg(λ) → [n] where [n] = {1, 2, · · · , n}
For λ = (6, 4, 2) , and n = 8 following is a filling of dg(λ)

F = 1 3 5 5 6 8
2 4 2 7
3 1

Following Haglund-Haiman-Loehr [2] and Ayyer-Mandelshtam-Martin [1], there are statistics inv, quinv
and maj on F(λ) such that

H̃λ(Xn; q, t) =
∑

F∈F(λ)

xFqv(F )tmaj(F ) (1)

where v ∈ {inv, quinv}. Expand H̃λ(Xn; q, t) in powers of t; our interest lies in the coefficients of the lowest
and highest powers [8, (3.1)]:

H̃λ(Xn; q, t) = Hλ(Xn; q)t
0 + · · · +Wλ(Xn; q)t

η(λ) (2)

Column strict filling (CSF)

A filling F is a column strict, if the values of F strictly increase down each column. Let CSF(λ) denotes
the collection of all column strict fillings of shape λ.

Let F ∈ F(λ). Then maj(F ) = η(λ) iff F ∈ CSF(λ).

From (1), we obtain for v ∈ {inv, quinv}:

Wλ(Xn; q) =
∑

F∈CSF(λ)

xFqv(F ) (3)

Partition overlaid pattern
Let n ≥ 1 and λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) be a partition with at most n nonzero parts. Let GT(λ)
denote the set of integral Gelfand-Tsetlin (GT) patterns with bounding row λ. Given T ∈ GT(λ), we
denote its entries by T j

i for 1 ≤ i ≤ j ≤ n as in Figure 1.

Define the North-East and South-East differences of T by: NEij(T ) = T j+1
i − T j

i and SEij(T ) = T j
i − T j+1

i+1

for 1 ≤ i ≤ (j + 1) ≤ n.

A partition overlaid pattern (POP) of shape λ is a pair (T ,Λ), where T ∈ GT(λ) and
Λ = (Λij : 1 ≤ i ≤ j < n) is a tuple of partitions such that each Λij fits into a rectangle of size
NEij(T )× SEij(T ). Let POP(λ) denotes the set of all partition overlaid patterns of shape λ.

The q-Whittaker polynomial can be expressed as

Wλ(Xn; q) =
∑

(T ,Λ)∈POP(λ)

xTq|Λ| (4)

where |Λ| =
∑

i ,j |Λij |.
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Figure 1: A GT-pattern for n = 4. On the right is a partition overlay compatible with this GT-pattern.

Projection and Branching for Partition overlaid patterns
Given λ, we say that µ = (µ1, µ2, · · · , µn−1) interlaces λ (and write µ ≺ λ) if λi ≥ µi ≥ λi+1 for
1 ≤ i < n.

The q-Whittaker polynomials have the following important properties which readily follow from (4)

i (projection) Wλ(Xn; q = 0) = sλ(Xn), the Schur polynomial.

ii (branching) Wλ(x1, x2, · · · , xn−1, xn = 1; q) =
∑
µ≺λ

∏
1≤i<n

[
λi − λi+1

λi − µi

]
q

·Wµ(Xn−1; q)

The combinatorial shadow of projection is the map pr : POP(λ) → GT(λ) given by pr(T ,Λ) = T .

Define combinatorial branching to be the map br : POP(λ) →
⊔
µ≺λPOP(µ) defined by

br(T ,Λ) = (T †,Λ†) where T † is obtained from T by deleting its bottom row, and Λ† is obtained from Λ by
deleting the overlays Λij with j = n − 1.

For (T ,Λ) ∈ POP(λ), define boxcomp(T ,Λ) = (T ,Λc) where for each i , j , (Λc)ij is defined to be the
complement of Λij in its bounding rectangle of size NEij(T )× SEij(T ).

Projection and branching for Column strict fillings
Given F ∈ CSF(λ), let rsort(F ) ∈ SSYT(λ) ∼= GT(λ), denote the filling obtained from F by sorting entries
of each row in ascending order. we think of rsort as the projection map in the CSF setting.

Let ℓ ≥ 1 and suppose σ = (σ1 < σ2 < · · · < σℓ−1) and τ = (τ1 < τ2 < · · · < τℓ) are column tuples of
length ℓ− 1 and ℓ respectively. We set σ0 = 0 and let k denote the maximum element of the (non-empty)
set {1 ≤ i ≤ ℓ : σi−1 < τi}.

Define splice(σ, τ ) = (σ, τ ) where

σi =

{
σi 1 ≤ i < k

τi k ≤ i ≤ ℓ
and τ i =

{
τi 1 ≤ i < k

σi k ≤ i < ℓ

For instance when (σ, τ ) = ( 1
5
, 2

3
4

), we get (σ, τ ) = ( 1
3
4

, 2
5
).

The delete-and-splice rectification (“dsplice”) map on F ∈ CSF(λ) is defined as follows:
i delete all cells in F containing the entry n and let F † denote the resulting filling. While its column entries remain strictly
increasing, F † may no longer be of partition shape.

ii Applying splice map between appropriate columns F † we can produces a CSF of partition shape (filled by numbers between 1
and n − 1), which we denote dsplice(F ). The following properties hold:

Proposition 1

With notation as above: (i) D := dsplice(F ) is independent of the intermediate choices of columns in
step 2 of the procedure. (ii) rsort(D) is obtained from rsort(F ) by deleting the cells containing the entry
n. (iii) If µ and λ are the shapes of D and F respectively, then µ ≺ λ.

We consider dsplice to be the combinatorial branching map in the CSF context.

Main Theorem

For any n ≥ 1 and any partition λ : λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with at most n nonzero parts, there exist
two bijections ψinv and ψquinv from CSF(λ) to POP(λ) with the following properties:

1. If ψv(F ) = (T ,Λ), then xF = xT and v(F ) = |Λ|, for v = inv or quinv.
2. The following diagrams commute (v = inv or quinv):
(A)

CSF(λ) POP(λ)

GT(λ)

ψv

rsort pr

(B)

CSF(λ) POP(λ)

⊔
µ≺λ

CSF(µ)
⊔
µ≺λ

POP(µ)

ψv

dsplice

ψv

br

3. The two bijections are related via the commutative diagram:

CSF(λ)

POP(λ) POP(λ)

ψinv ψquinv

boxcomp

Proof sketch

For a partition λ, the augmented diagram d̂g(λ) is dg(λ) together with one additional cell below the last
cell in each column.

Given F ∈ CSF(λ), a quinv-triple (resp. refinv-triple ) in F is a triple of cells (x , y , z) in d̂g(λ) such that
(i) x , z ∈ dg(λ) and z is to the right (resp. to the left ) of x in the same row, (ii) y is the cell immediately
below x in its column, (iii) F (x) < F (z) < F (y), where we set F (y) = ∞ if y lies outside dg(λ).

The quinv-triples considered in [1] for F ∈ F(λ) reduce to this description when F is a CSF rather than a
general filling.

Proposition 2

For F ∈ CSF(λ), inv(F ) equals the number of refinv-triples of F .

Definition of ψquinv

Given F ∈ CSF(λ), for each cell c ∈ dg(λ), let zcount(c, F ) = the number of quinv-triples (x , y , z) in F
with z = c . Clearly ∑

c∈dg(λ)

zcount(c, F ) = quinv(F ). (5)

Let cells(i , j , F ) = {c ∈ dg(λ) : c is in the i th row and F (c) = j + 1} for 1 ≤ i ≤ j + 1 ≤ n.

It follows that | cells(i , j , F )| = NEij(T ), where T = rsort(F ).

If c ∈ cells(i , j , F ), then zcount(c, F ) ≤ SEij(T ).

If c, d ∈ cells(i , j , F ) with c lying to the right of d , then zcount(c, F ) ≥ zcount(d , F ).

Let F ∈ CSF(λ) and T = rsort(F ). For each 1 ≤ i ≤ j + 1 ≤ n, consider the sequence

Λij = (zcount(c, F ) : c ∈ cells(i , j , F ) traversed right to left in row i). (6)

Define
ψquinv(F ) = (T ,Λ),

where Λ = (Λij : 1 ≤ i ≤ j < n), then (T ,Λ) ∈ POP(λ). Clearly, xF = xT and (5) implies quinv(F ) = |Λ|.

Example

F = 1 1 2 1 2 1 2 4 4 3
2 2 3 3 3 4
3 3 4 4

zcount(·, F ) = 0 0 0 0 1 0 2 1 1 2
0 0 0 0 0 1
0 0 2 2

Figure 2: Here F ∈ CSF(λ) for λ = (10, 6, 4, 0) and n = 4. Cells of F are coloured according to their entries. The gray cells

are the extra cells in the augmented diagram d̂g(λ). On the right are cellwise zcount values. Here quinv(F ) = 12.

Definition of ψinv

Given F ∈ CSF(λ) and c ∈ dg(λ), define zcount(c, F ) = the number of refinv-triples (x , y , z) in F with
z = c . In light of Proposition 2, it is clear that∑

c∈dg(λ)

zcount(c, F ) = inv(F ) (7)

We have the following relation between zcount and zcount:

Proposition 3

Let F ∈ CSF(λ) and T = rsort(F ). Let 1 ≤ i ≤ j + 1 ≤ n and c ∈ cells(i , j , F ). Then
zcount(c, F ) + zcount(c, F ) = SEij(T ).

Given F ∈ CSF(λ), let T = rsort(F ). For each 1 ≤ i ≤ j < n, consider the sequence:

Λij = (zcount(c, F ) : c ∈ cells(i , j , F ) traversed left to right in row i)

It follows from Proposition 3 that Λij is the box-complement of Λij in the NEij(T )× SEij(T ) rectangle.

Let Λ = (Λij : 1 ≤ i ≤ j < n), we define ψinv(F ) = (T ,Λ). We have xF = xT , and inv(F ) = |Λ|.

Construction of ψ−1
inv and ψ−1

quinv

Given (T ,Λ) ∈ POP(λ), construct the filling F := ψ−1
inv (T ,Λ) ∈ CSF(λ) inductively row-by-row, from the

bottom (nth) row to the top as follows:

(a) fill all cells of the nth row (if nonempty) with n,

(b) let 1 ≤ i ≤ j < n; assuming that all rows of F strictly below row i have been completely determined
and that the locations of entries > (j + 1) in row i have been determined, we now need to fill NEij(T ) many
cells of row i with the entry j + 1. It turns out that the number of cells in row i in which we can potentially
put a j + 1 without violating the CSF condition thus far is exactly k + ℓ where k = NEij(T ) and
ℓ = SEij(T ). We label these cells 0, 1, · · · , k + ℓ− 1 from right to left (left-to-right when defining ψ−1

quinv).
The partition Λij can be viewed as a k-tuple of candidate cells in row i ; we put the entry j + 1 into these,

(c) fill the remaining cells of row i with the entry i .

Example
Let n = 4, λ = (10, 6, 4, 0) and let T ,Λ be the GT pattern and overlay depicted in Figure 1. Then
ψ−1
quinv(T ,Λ) is precisely the CSF F of Figure 2, while

ψ−1
inv (T ,Λ) = 2 1 1 1 3 2 1 4 4 2

3 3 2 2 4 3
4 4 3 3

Local Weyl modules and limit constructions
Using Theorem 1 to replace POPs with CSFs as our model in [7, Corollary 5.13], we deduce :

Proposition 4
Fix n ≥ 2 and consider the partition θ = (2, 1, 1, · · · , 1, 0) with n − 1 nonzero parts and |θ| = n. For
k ≥ 0, let Ck denote the set of CSFs F of shape kθ and entries in [n], with the property that either 1
occurs in the first column of F or 1 does not occur in its last column. Then

∑
k≥0

∑
F∈Ck x

F qk
2−inv(F )

equals the character of L(Λ0).

Concluding Remarks
For the modified Hall-Littlewood polynomials Q ′

λ′(Xn; q) of (3), the fermionic formula appears in [4, (0.2)].
Analogous to (4), this can now be recast as a weighted sum over partition overlaid plane-partitions
(POPP) of shape λ. Min Theorem takes the form of bijections from WDF(λ) to POPP(λ) (or equivalently,
from tabloids to partition overlaid reverse-plane-partitions).

The bijections of Theorem 1 (and those indicated above for the modified Hall-Littlewood case) have an
attractive interpretation in terms of lattice-path diagrams.

References

[1] Arvind Ayyer, Olya Mandelshtam, and James B. Martin. “Modified Macdonald polynomials and the multispecies zero-range process. I”.
English. In: Algebr. Comb. 6.1 (2023), pp. 243–284. issn: 2589-5486

[2] J. Haglund, M. Haiman, and N. Loehr. “A combinatorial formula for Macdonald polynomials”. In: J. Amer. Math. Soc. 18.3 (2005), pp.
735–761. issn: 0894-0347,1088-6834.

[3] I. G. Macdonald. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford University Press, New
York, 1995, pp. x+475. isbn: 0-19-853489-2.

[4] Anatol N. Kirillov. “New combinatorial formula for modified Hall- Littlewood polynomials”. English. In: q-series from a contemporary
perspective. American Mathematical Society, 2000, pp. 283–333. isbn: 0-8218-1150-9.

[5] V. G. Kac. Infinite-dimensional Lie algebras. 3rd edition. Cambridge University Press, 1990.

[6] Vyjayanthi Chari and Sergei Loktev. “Weyl, Demazure and fusion modules for the current algebra of slr+1”. English. In: Adv. Math. 207.2
(2006), pp. 928–960. issn: 0001-8708.

[7] K. N. Raghavan, B. Ravinder, and Sankaran Viswanath. “On Chari- Loktev bases for local Weyl modules in type A”. English. In: J. Comb.
Theory, Ser. A 154 (2018), pp. 77–113. issn: 0097-3165

[8] F. Bergeron. A Survey of q-Whittaker polynomials. 2020. arXiv: 2006. 12591 [math.CO].


