

OEIS A003121

- 1. # of shifted standard tableaux of staircase shape
- 2. # longest chains in the Tamari lattice
- 3. # of reduced words of a certain commutation class of the long permutation
- 4. # of linear extensions of the poset of join irreducibles of the 132 and 312 avoiding permutations
- 5. the normalized volume of a subpolytope of the Birkhoff polytope whose vertices are the permutation matrices of 132 and 312 avoiding permutations

Davis and Sagan's Question [1]

Is the above polytope in 5 unimodularly equivalent to the order polytope of the poset in 4?

The c-Birkhoff Polytope Birk(c)

A Coxeter element in S_{n+1} is a product of all simple reflections s_1, \ldots, s_n . Ex. $s_2s_3s_1s_4 \in S_5$ If $c = s_{i_1} s_{i_2} \dots s_{i_\ell}$, then we define the expression $c^{\infty} := i_1 \cdots i_\ell | i_1 \cdots i_\ell | i_1 \cdots i_\ell | \cdots$ The *c*-sorting word of w, denoted sort_c(w), is the lexicographically left-most reduced expression for w which appears as a subword of c^{∞} .

Ex. Let $c = s_1 s_2 s_3 \in S_4$, $w_0 = s_1 s_2 s_1 s_3 s_2 s_1 = s_1 s_2 s_3 s_1 s_2 s_1$, So $sort_{c}(w_{0}) = s_{1}s_{2}s_{3}s_{1}s_{2}s_{1}$.

w is a *c*-singleton iff the *c*-sorting word of w is a prefix of the *c*-sorting word of the long element w_0 up to commutations.

Ex. The c-singletons for $c = s_1 s_2 s_3$ (Tamari) are

 $\mathsf{Id}, s_1, s_1s_2, s_1s_2s_1, s_1s_2s_3s_1, s_1s_2s_3s_1s_2, s_1s_2s_3s_1s_2s_1, s_1s_2s_3.$

The *c*-Birkhoff polytope, denoted Birk(*c*), is the convex hull of $\{X_w \mid w \text{ is a } c\text{-singleton}\}$ where X_w is the permutation matrix for w.

Ex. Birk $(s_1s_2s_3)$ is the convex hull of the 8 points in \mathbb{R}^{16} :

$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	[0 1 0 0]	[0 1 0 0]	[0 0 1 0]	[0 0 1 0]	[0 0 1 0]
0 1 0 0	1 0 0 0	0 0 1 0	0 1 0 0	0 1 0 0	0001
0 0 1 0	' 0 0 1 0	' 1 0 0 0	' 1 0 0 0	' 0 0 0 1	' 0 1 0 0 '
$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

The Order Polytope of a Heap $\mathcal{O}(\mathcal{H}_c)$

The heap of a reduced word $q = s_{i_1} \cdots s_{i_k}$ for w is a poset on $\{1, \ldots, k\}$ with cover relations if both a < b and the corresponding simple generators s_{i_a}, s_{i_b} do not commute. $a \prec b$

Denote the poset $\mathcal{H}_c := \mathsf{Heap}(\mathsf{sort}_c(w_0))$ for a Coxeter element c.

The order polytope of a poset is the convex hull of the indicator vectors of its order ideals. Ex. The vertices of $\mathcal{O}(\mathcal{H}_{s_1s_2s_3})$ are the 8 points in \mathbb{R}^6 (columns of the matrix below):

$\begin{bmatrix} 0 \end{bmatrix}$	0	0	0	0	0	1	0
0	0	0	0	0	1	1	0
0	0	0	0	1	1	1	1
0	0	0	1	1	1	1	0
0	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1

The dimension of an order polytope is the # of vertices in the poset (full-dimensional); the normalized volume is # of linear extensions of the poset.

Pattern-avoiding polytopes and Cambrian lattices

Esther Banaian¹

¹Aarhus University

²University of Puget Sound

³University of Massachusetts Lowell

Constructions

the *c*-Cambrian lattice.

Sunita Chepuri² Emily Gunawan³

Jianping Pan⁴

⁴North Carolina State University

 $\mathcal{O}(\mathcal{H}_c)$

٦	(n(n))			المراجع المرار		
С	$O(\mathcal{H}_c)$	are	unimoc	iularly	equival	ent.

el	O١	∕∨:						
0	0	0	0	0	0	1	0	
0	0	0	0	0	1	1	0	
0	0	0	0	1	1	1	1	
0	0	0	1	1	1	1	0	•
0	0	1	1	1	1	1	1	
0	1	1	1	1	1	1	1	

2

0	0	0	0	0	0	1	0 0
0	0	0	0	0	1	1	0 1
0	0	0	0	1	1	1	0 0
0	0	0	1	1	1	1	0 1
0	0	1	1	1	1	1	1 1
0	1	1	1	1	1	1	$\left[\begin{array}{c} 0 & 1 \end{array}\right]$

For a Coxeter element $c \in S_{n+1}$, we partition the integers in [2, n] into lower-barred and upperbarred numbers $d_1 < d_2 < \cdots < d_r$ and $u_1 < u_2 < \cdots < u_s$, respectively. If s_{i-1} is to the left of s_i in c, i is a lower-barred number; otherwise, i is an upper-barred number.

c can be presented in cycle notation

$$c = (1 \underline{d_1} \dots \underline{d_r} (n+1$$

Properties of *c***-singletons**

Any c-singleton w, with permutation matrix $X_w = (X(i, j))_{i,j}$, satisfies the following properties.

Proposition (Positions of zeros) Given an upper-barred number u, if $1 \le j \le \min(u-1, n+1-u)$, then we cannot have w(j) = u. Given a lower-barred number d, if $\max(d+1, n+3-d) \le j \le n+1$, then we cannot have w(j) = d.

Proposition (Adding to one) For each $1 \le i \le \frac{n-1}{2}$ and $i+1 \le u \le n-i$, there exists a sequence $i = v_0 < v_1 < \cdots < v_d$, where $d \ge 1$, such that

is equal to either 1 or d (depending on i and u).

A Lattice-preserving Projection Π_c

To define Π_c , the first entries we will read are

$$(d_1 - 1, d_1)$$

$$(d_r-1, d_r)$$

 $(d_r), (d_r - 2, d_r), \dots, (1, d_r),$ $(n, n+1), (n-1, n+1), \dots, (1, n+1).$

The remaining entries come from u_s, \ldots, u_1 . For each u, take u - 1 entries as follows:

- Let $m = \min(u 1, n + 1 u)$.
- First take the *m* entries $(n + 1, c^1(u), (n, c^2(u)), \dots, (n + 2 m, c^m(u)))$.

Ex. For $c = s_1 s_4 s_3 s_2 s_6 s_5 s_7$, we have c = (12578643). We compute the projection Π_c below.

	28	Х	Х	24	Х	18	11
		Х	Х	25	Х	19	12
			Х	26	6	20	13
				27	7	21	14
					8	22	15
	3			Х		23	16
4	1	9		Х			17
2	Х	5	10	Х		Х	

Figure 1. Left: The projection Π_c . Right: permutation matrix for $s_1s_4s_3s_2$.

Theorem Fix a Coxeter element c in S_{n+1} . There exists a $\binom{n+1}{2} \times \binom{n+1}{2}$ lower-triangular matrix \mathcal{U}_c with 1's on the main diagonal such that $\mathcal{U}_c \circ \Pi_c(b_i) = o(b_i)$ for all $1 \leq i \leq \binom{n+1}{2}$. Furthermore, we have $\mathcal{U}_c \circ \Pi_c(w) = o(w)$ for any *c*-singleton *w*.

Notation

1) $\overline{u_s} \dots \overline{u_1} = (\overline{u_s} \dots \overline{u_1} \ 1 \ d_1 \dots \underline{d_r} \ (n+1)).$

Ex. Let $c = s_1 s_4 s_3 s_2 s_6 s_5 s_7$, then $d_1, d_2, d_3 = 2, 5, 7$ and $u_1, u_2, u_3 = \overline{3}, \overline{4}, \overline{6}$. We get c = (12578643).

$$\sum_{j=0}^{d} \sum_{i=1}^{u} X(i, v_j)$$
and u

Corollary (Tamari case) If $c = s_1 s_2 \cdots s_n$ and w is a c-singleton, then, for each $y \in [n+1]$ and $0 \le z \le y - 1$, there is exactly one value in $\{w(1), \ldots, w(y)\}$ which is equivalent to z modulo y.

 l_1), $(d_1 - 2, d_1), \ldots, (1, d_1),$

• Then take the additional u - 1 - m entries $(u - 1, u), (u - 2, u), \dots, (m + 1, u)$.

0	1	0	0	\bigcirc	0	0	\bigcirc
0	0	0	0	\bigcirc	0	\bigcirc	\bigcirc
1	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	0	1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	0	0	1	0	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	0	0	0	1	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	0	0	0	1	\bigcirc
0	0	\bigcirc	\bigcirc	0	0	0	1

References

^[1] Robert Davis and Bruce Sagan. Pattern-avoiding polytopes. *European J. Combin.*, 74:48–84, 2018.