Pattern-avoiding polytopes and Cambrian lattices

NC STATE UNIVERSITY

OEIS A00312

\# of shifted standard tableaux of staircase shape
\# longest chains in the Tamari lattice
\# of reduced words of a certain commutation class of the long permutation
\# of linear extensions of the poset of join irreducibles of the 132 and 312 avoiding permutations
the normalized volume of a subpolytope of the Birkhoff polytope whose vertices are the
permutation matrices of 132 and 312 avoiding permutations

Davis and Sagan's Question [1]

Is the above polytope in 5 unimodularly equivalent to the order polytope of the poset in 4?

The c-Birkhoff Polytope Birk (c)

A Coxeter element in S_{n+1} is a product of all simple reflections s_{1}, \ldots, s_{n}. Ex. $s_{2} s_{3} s_{1} s_{4} \in S_{5}$
If $c=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$, then we define the expression $c^{\infty}:=i_{1} \cdots i_{\ell}\left|i_{1} \cdots i_{\ell}\right| i_{1} \cdots i_{\ell} \mid$.
The c-sorting word of w, denoted sort $_{c}(w)$, is the lexicographically left-most reduced expression for w which appears as a subword of c^{∞}.
Ex. Let $c=s_{1} s_{2} s_{3} \in S_{4}, w_{0}=s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}, \quad$ (12)3 $|(1) 23|(1) 23|123|$ So $\operatorname{sortc}_{c}\left(w_{0}\right)=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}$.
w is a c-singleton iff the c-sorting word of w is a prefix of the c-sorting word of the long element w_{0} up to commutations.
Ex. The c-singletons for $c=s_{1} s_{2} s_{3}$ (Tamari) are
Id $, s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{1} s_{2} s_{3} s_{1}, s_{1} s_{2} s_{3} s_{1} s_{2}, s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}, s_{1} s_{2} s_{3}$
The c-Birkhoff polytope, denoted $\operatorname{Birk}(c)$, is the convex hull of $\left\{X_{w} \mid w\right.$ is a c-singleton $\}$ where X_{w} is the permutation matrix for w.
Ex. $\operatorname{Birk}\left(s_{1} s_{2} s_{3}\right)$ is the convex hull of the 8 points in \mathbb{R}^{16} :
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$

The Order Polytope of a Heap $\mathcal{O}\left(\mathcal{H}_{c}\right)$

The heap of a reduced word $q=s_{i_{1}} \cdots s_{i_{k}}$ for w is a poset on $\{1, \ldots, k\}$ with cover relations $a \prec b \quad$ if both $a<b$ and the corresponding simple generators $s_{i_{a}}, s_{i_{b}}$ do not commute. Denote the poset $\mathcal{H}_{c}:=\operatorname{Heap}\left(\operatorname{sort}_{c}\left(w_{0}\right)\right)$ for a Coxeter element c.
The order polytope of a poset is the convex hull of the indicator vectors of its order ideals. Ex. The vertices of $\mathcal{O}\left(\mathcal{H}_{s_{1} s_{2} s_{3}}\right)$ are the 8 points in \mathbb{R}^{6} (columns of the matrix below):

$\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

The dimension of an order polytope is the \# of vertices in the poset (full-dimensional); the normalized volume is \# of linear extensions of the poset.

Constructions
Birk (c)
\qquad

\qquad $\longrightarrow \mathbb{R}^{\binom{n+1}{2}}$

Theorem

For any Coxeter element c, the two polytopes $\operatorname{Birk}(c)$ and $\mathcal{O}\left(\mathcal{H}_{c}\right)$ are unimodularly equivalent.
A Tamari Example ($c=s_{1} s_{2} s_{3}$)
The unimodular transformation from $\operatorname{Birk}(c)$ to $\mathcal{O}\left(\mathcal{H}_{c}\right)$ is below:
$\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{lllllll|l}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1\end{array}\right]=\left[\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

Left matrix: \mathcal{U}_{c}, the unimodular transformation matrix;
Middle matrix: columns are the projection of the vertices of $\operatorname{Birk}(c)$ under the projection

Right matrix: columns are the vertices of $\mathcal{O}\left(\mathcal{H}_{c}\right)$.
Note the last column of the middle (resp. right) matrix is $5^{\text {th }}$ column $-4^{\text {th }}$ column $+3^{\text {rd }}$ column, it suffices to solve the system of linear equations before

A Bipartite Example ($c=s_{1} s_{3} s_{2}$)

sortc $\left(w_{0}\right)=s_{1} s_{3} s_{2} s_{1} s_{3} s_{2}$ and Birk (c) is the convex hull of the following 9 points in \mathbb{R}^{16} :

ld	s_{1}	$s_{1} s_{3}$	$s_{1} s_{3} s_{2}$	$s_{1} s_{3} s_{2} s_{1}$	
$\left[\begin{array}{cccc}1 & 0 & 0 & 0\end{array}\right.$	$\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right.$	$\left[\begin{array}{cccc}0 & 1 & 0 \\ 1 & 0\end{array}\right.$	$\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right.$	$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$	$4^{\prime}{ }^{6}{ }^{5}$
0100	1000	1000	0001	0100	
00010	0010	0001	1000	1000	
$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$	$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$	$\left[\begin{array}{lllll}0 & 0 & 1 & 0\end{array}\right]$	
$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$	6 $\times 37$	
0100	0010	0100	000011	14	$1{ }^{1}$
00010	01100	0001	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$		$\begin{array}{llll}s_{1} & s_{2} & s_{3}\end{array}$
$\left.\begin{array}{lllll}1 & 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$	2 X	

Then the unimodular transformation from $\operatorname{Birk}(c)$ to $\mathcal{O}\left(\mathcal{H}_{c}\right)$ can be written as the following:

[^0]
Notation

For a Coxeter element $c \in S_{n+1}$, we partition the integers in $[2, n]$ into lower-barred and upperFor a Coxeter element $c \in S_{n+1}$, we partion s_{i} in c, i is a lower-barred number; otherwise, i is an upper-barred number.
c can be presented in cycle notation $c=\left(1 \underline{d_{1}} \cdots \underline{d_{r}}(n+1) \overline{u_{s}} \ldots \overline{u_{1}}\right)=\left(\overline{u_{s}} \ldots \overline{u_{1}} 1 \underline{d_{1}} \cdots \underline{d_{r}}(n+1)\right)$.

Ex. Let $c=s_{1} s_{4} s_{3} s_{2} s_{6} 6_{5} s_{7}$, then $d_{1}, d_{2}, d_{3}=\underline{2}, \underline{5}, \underline{7}$ and $u_{1}, u_{2}, u_{3}=\overline{3}, \overline{4}, \overline{\overline{6}}$. We get $c=(12578643)$.

Properties of c-singletons

Any c-singleton w, with permutation matrix $X_{w}=(X(i, j))_{i, j}$, satisfies the following properties. Proposition (Positions of zeros) Given an upper-barred number u, if $1 \leq j \leq \min (u-1, n+1-u)$, then we cannot have $w(j)=u$. Given a lower-barred number d, if $\max (d+1, n+3-d) \leq j \leq n+1$,
then we cannot have $w(j)=d$. then we cannot have $w(j)=d$.
Proposition (Adding to one) For each $1 \leq i \leq \frac{n-1}{2}$ and $i+1 \leq u \leq n-i$, there exists a sequence $=v_{0}<v_{1}<\cdots<v_{d}$, where $d \geq 1$, such that

$$
\sum_{j=0}^{d} \sum_{i=1}^{u} X\left(i, v_{j}\right)
$$

is equal to either 1 or d (depending on i and u).
Corollary (Tamari case) If $c=s_{1} s_{2} \cdots s_{n}$ and w is a c-singleton, then, for each $y \in[n+1]$ and $0 \leq z \leq y-1$, there is exactly one value in $\{w(1), \ldots, w(y)\}$ which is equivalent to z modulo y.

A Lattice-preserving Projection Π_{c}

To define Π_{c}, the first entries we will read are

$$
\begin{aligned}
& \left(d_{1}-1, d_{1}\right),\left(d_{1}-2, d_{1}\right), \ldots,\left(1, d_{1}\right), \\
& \ldots \\
& \left(d_{r}-1, d_{r}\right),\left(d_{r}-2, d_{r}\right), \ldots,\left(1, d_{r}\right), \\
& (n, n+1),(n-1, n+1), \ldots,(1, n+1) .
\end{aligned}
$$

The remaining entries come from u_{s}, \ldots, u_{1}. For each u, take $u-1$ entries as follows:

- Let $m=\min (u-1, n+1-u$.
- First take the m entries $\left(n+1, c^{1}(u),\left(n, c^{2}(u)\right), \ldots,\left(n+2-m, c^{m}(u)\right.\right.$).
- Then take the additional $u-1$ - m entries $(u-1, u),(u-2, u), \ldots,(m+1, u)$,

EX. For $c=s_{1} s_{4} s_{3} s_{2} s_{6} s_{5} s_{7}$, we have $c=(12578643)$. We compute the projection Π_{c} below.

$\begin{array}{ll} & \text { (1) } 0 \text { (1) (1) } \\ 0 & 0 \\ 0 & 0\end{array} 1$
$\Pi_{c}\left(s_{1} s_{4} s_{3} s_{2}\right)=(0,1,0,0,1)$, and $o\left(s_{1} s_{4} s_{3} s_{2}\right)=(0,1,1,1,1)$.
Theorem Fix a Coxeter element c in S_{n+1}. There exists a $\binom{n+1}{2} \times\binom{ n+1}{2}$ lower-triangular matrix \mathcal{U}_{c} with 1's on the main diagonal such that $\mathcal{U}_{c} \circ \Pi_{c}\left(b_{i}\right)=o\left(b_{i}\right)$ for all $1 \leqslant i \leqslant\binom{ n+1}{2}$. Furthermore, we have $\mathcal{U}_{c} \circ \Pi_{c}(w)=o(w)$ for any c-singleton w.

References

[^0]: Corollary
 The normalized volume of the c-Birkhoff polyope is equal to the number of longest chains in the c-Cambrian lattice.

