Hyperplane Arrangements

Definitions

Let \mathbb{K} be a field and let V be a \mathbb{K} -vector space of dimension ℓ . A hyperplane H in V is a subspace of dimension $\ell - 1$. A hyperplane arrangement is a finite set of hyperplanes in V. Let V^* be the dual space of V and $S = S(V^*)$ be the symmetric algebra of V^* . Identify S with $\mathbb{K}[x_1,..,x_\ell].$

Each hyperplane $H \in \mathcal{A}$ is the kernel of a polynomial α_H of degree 1 defined up to a constant. The product

$$Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H$$

is called a defining polynomial of \mathcal{A} .

Let $V = \mathbb{K}^{\ell}$. Given a graph $G = (\mathcal{V}, E)$, define an arrangement $\mathcal{A}(G)$ by

$$\mathcal{A}(G) = \{ \ker(x_i - x_j) | \{i, j\} \in E \}$$

called the graphic arrangement to G.

Deletion-Restriction

 $L(\mathcal{A})$ is called the intersection lattice of the arrangement with partial order by reverse inclusion. For $X \in L(\mathcal{A})$ define the subarrangement \mathcal{A}_X of \mathcal{A} by

$$\mathcal{A}_X = \{ H \in \mathcal{A} \mid X \subseteq H \}$$

as well as (\mathcal{A}^X, X) , an arrangement in X, by

 $\mathcal{A}^X = \{X \cap H \mid H \in \mathcal{A} \setminus \mathcal{A}_X \text{ and } X \cap H \neq \emptyset\}$

called the restriction of \mathcal{A} to X. Let \mathcal{A} be a non-empty arrangement and let $H_0 \in \mathcal{A}$. Let $\mathcal{A}' = \mathcal{A} \setminus \{H_0\}$ and let $\mathcal{A}'' = \mathcal{A}^{H_0}$.

The module of A-Derivations (Saito '79)

A \mathbb{K} -linear map $\theta: S \to S$ is a derivation if for $f, g \in S$:

$$heta(f \cdot g) = f \cdot heta(g) + g \cdot heta(f).$$

Let $\text{Der}_{\mathbb{K}}(S)$ be the S-module of derivations of S. Define an S-submodule of $\text{Der}_{\mathbb{K}}(S)$, called the module of A-derivations, by

$$D(\mathcal{A}) = \{ \theta \in \mathsf{Der}_{\mathbb{K}}(S) \mid \theta(\alpha_H) \in \alpha_H S \text{ for all } H \in \mathcal{A} \}.$$

The arrangement \mathcal{A} is called free if $D(\mathcal{A})$ is a free S-module.

Freeness of graphic arrangements [ER]

The following is known for graphic arrangements due to Stanley '72, Edelman, Reiner '94: $\mathcal{A}(G)$ is free if and only if G is chordal.

Motivation: Terao's freeness conjecture ('83)

The freeness of an arrangement \mathcal{A} defined over a fixed field \mathbb{F} depends only on its intersection lattice $L(\mathcal{A})$, or equivalently, on its underlying matroid.

Projective dimension

Let M be a module. The projective dimension pd(M) is the minimum integer n (if it exists), such that there is a resolution of M by projective modules

$$0 \rightarrow P_n \rightarrow ... \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0.$$

The projective dimension of an arrangement is the projective dimension of its derivation module.

Lemma 1 [AKMM]

Assume that \mathcal{A}_X is free for all $X \in L_2(\mathcal{A}^{H_0})$ and $pd(\mathcal{A}) \leq 1$. Then we also have $pd(\mathcal{A}') \leq 1$.

Projective dimension of weakly chordal graphic arrangements

Faculty of Mathematics, Universität Bielefeld joint work with Takuro Abe, Lukas Kühne and Paul Mücksch arxiv:2307.06021

Main result (Abe, Kühne, Mücksch, M. '23)

 $pd(\mathcal{A}(G)) = 1$ if and only if G is weakly chordal and non-chordal.

Proof outline

- Prove that if G is weakly chordal, then $pd(\mathcal{A}(G)) \leq 1$.
-) Prove that if G is a k-cycle, $k \ge 5$, then $pd(\mathcal{A}(G)) > 1$.
- 3) Prove that if G is a k-antihole, $k \ge 5$, then $pd(\mathcal{A}(G)) > 1$.
- This suffices because for any localization X, it holds that

Step (1)

Use Lemma 1 (hyperplane arrangement theory) iteratively to remove hyperplanes from the arrangement $\mathcal{A}(K_{\ell})$, which is free.

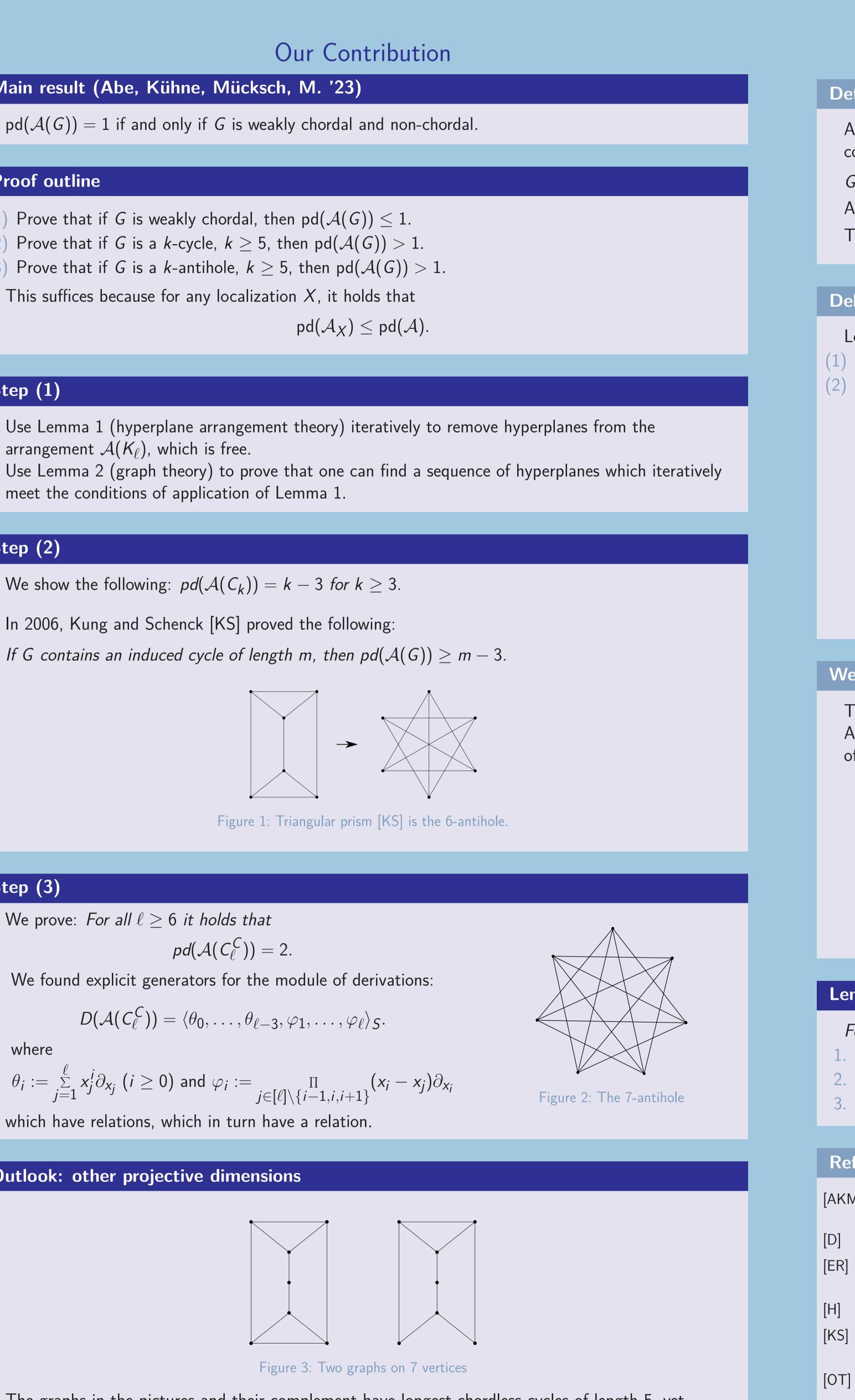
meet the conditions of application of Lemma 1.

Step (2)

We show the following: $pd(\mathcal{A}(C_k)) = k - 3$ for $k \ge 3$.

In 2006, Kung and Schenck [KS] proved the following:

If G contains an induced cycle of length m, then $pd(\mathcal{A}(G)) \ge m - 3$.



Step (3)

We prove: For all $\ell \geq 6$ it holds that $pd(\mathcal{A}(C_{\ell}^{C})) = 2.$

We found explicit generators for the module of derivations:

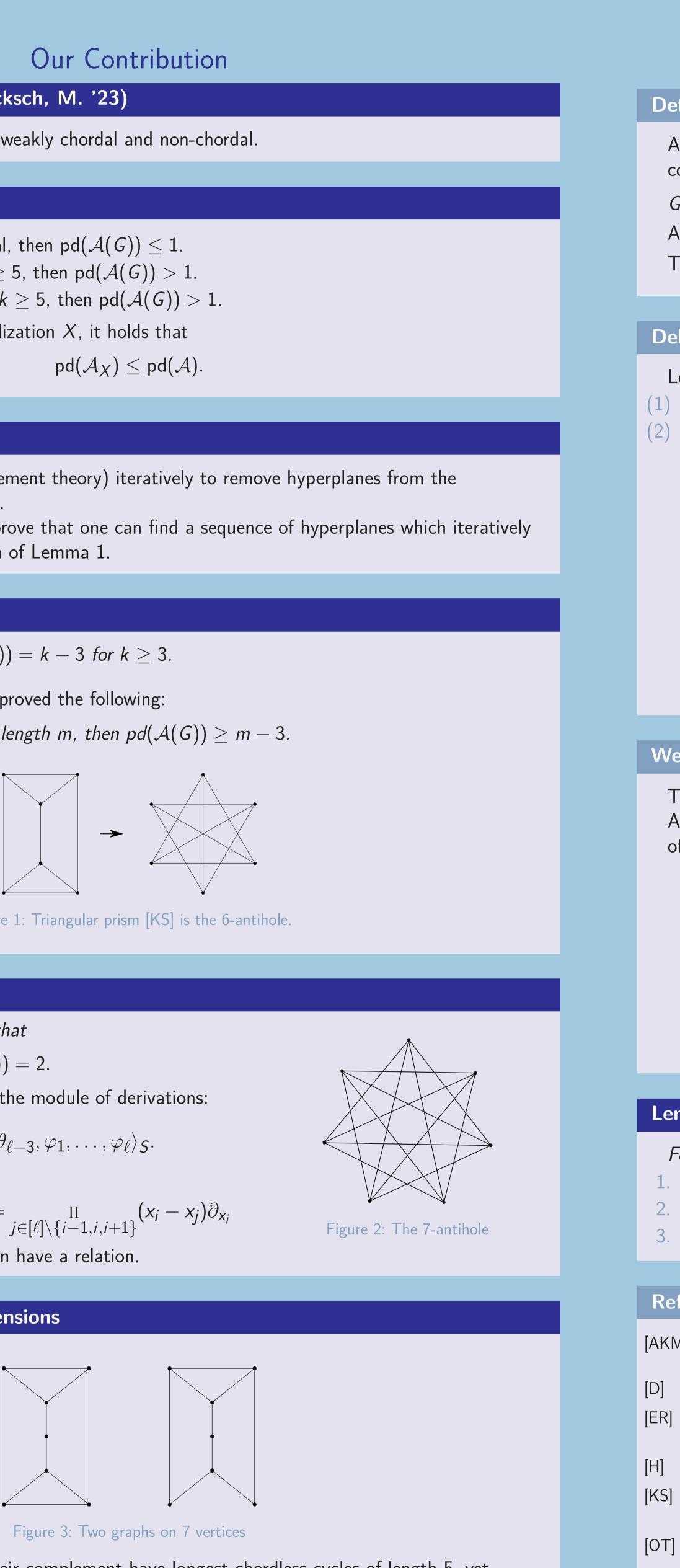
$$D(\mathcal{A}(C_{\ell}^{C})) = \langle \theta_0, \ldots, \theta_{\ell-3}, \varphi_1, \ldots, \varphi_{\ell} \rangle_{S}.$$

whore

$$\theta_i := \sum_{j=1}^{\ell} x_j^i \partial_{x_j} \ (i \ge 0) \text{ and } \varphi_i := \prod_{j \in [\ell] \setminus \{i-1, i, i+1\}} (x_i - x_j) \theta_i$$

which have relations, which in turn have a relation.

Outlook: other projective dimensions



The graphs in the pictures and their complement have longest chordless cycles of length 5, yet projective dimension 3.

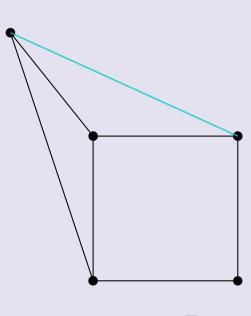
Leonie Mühlherr

Definitions

G. If $E' = \binom{\mathcal{V}'}{2} \cap E$, the graph G' is an induced subgraph of G. A graph is chordal if it has no induced cycles of length > 3. The graph $G^{\mathcal{C}} = (\mathcal{V}, \binom{\mathcal{V}}{2} \setminus E)$ is called the complement graph of G.

Deletion-Contraction

Let $G = (\mathcal{V}, E)$ be a graph and $e = \{i, j\} \in E$. (1) The graph $G' = (\mathcal{V}, E \setminus \{e\})$ is obtained from G through deletion of e.



Weakly chordal graphs [H]

The class of weakly chordal graphs was first introduced by Hayward in '83: A graph is called weakly chordal if it contains no induced k-cycle with k > 4 and no complement of such a cycle as an induced subgraph.

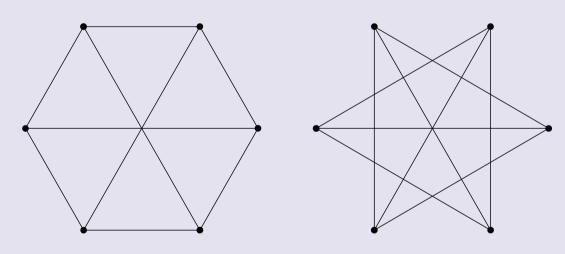


Figure 5: Weakly chordal graph (left) and the 6-antihole (right)

Lemma 2 [AKMM]

- G_k is chordal.

References

[AKMM] T.	Abe, L.Kühne, P.	Mücksch and L.
2023.	arXiv:2307.06021	

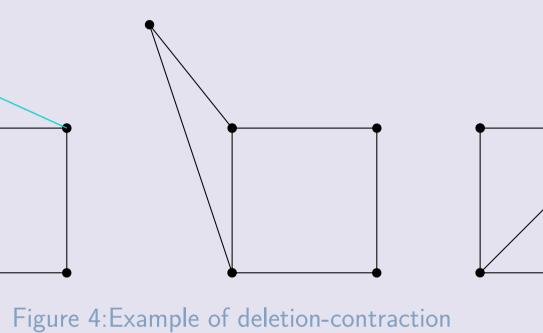
- 347-365 Springer, Berlin, 2017, pp. xviii+428.
- Combin.24(2006), no.3, 253–262.
- Springer-Verlag, Berlin, 1992, pp. xviii+325

UNIVERSITÄT BIELEFELD Fakultät für Mathematik

Graph Theory

A simple graph G on a set \mathcal{V} is a tuple (\mathcal{V}, E) with $E \subseteq \binom{\mathcal{V}}{2}$ the set of (undirected) edges connecting the vertices in \mathcal{V} . A graph $G' = (\mathcal{V}', E')$ with $\mathcal{V}' \subseteq \mathcal{V}, E' \subseteq E$ is called a subgraph of

(2) The graph $G'' = (\mathcal{V}'', E'')$ with \mathcal{V}'' the vertex set obtained by identifying *i* and *j* and $E'' = \{\{\bar{p}, \bar{q}\} | \{p, q\} \in E'\}$ is obtained by contraction of G with respect to e.



For a weakly chordal graph $G = (\mathcal{V}, E)$, there exists a sequence of edges $e_1, ..., e_k \notin E$, such that 1. $G_i = (V, E \cup \{e_1, ..., e_i\})$ is weakly chordal for i = 1, ..., k - 1, 2. the edge e_i is not part of an induced cycle C_4 in G_i for $i = 1, \ldots, k$ and

Mühlherr. Projective dimension of weakly chordal graphic arrangements,

R. Diestel. Graph theory. Fifth. Vol. 173. Graduate Texts in Mathematics.

[ER] P. H. Edelman and V. Reiner. Free hyperplane arrangements between An-1 and Bn. In: Math. Z. 215.3 (1994), pp.

R. Hayward. Weakly triangulated graphs. In: J. Combin. Theory Ser. B 39.3 (1985), pp. 200–208.

[KS] J. P. S. Kung and H. Schenck. *Derivation modules of orthogonal duals of hyperplane arrangements*. J. Algebraic

[OT] P. Orlik and H. Terao. Arrangements of hyperplanes Vol. 300 Grundlehren der mathematischen Wissenschaften.