

Abstract

The product of a Schur polynomial and Demazure atom or character expands positively in Demazure atoms or characters, respectively. The structure coefficients in these expansions have known combinatorial rules in terms of skyline tableaux [3]. We develop alternative rules using the theory of integrable vertex models, inspired by a technique introduced by Zinn-Justin [4]. We apply this method to coloured vertex models for atoms and characters obtained from Borodin and Wheeler's [1] models for non-symmetric Macdonald polynomials. The structure cofficients are then obtained as partition functions of vertex models that are compatible with both Schur (uncoloured) and Demazure (coloured) vertex models.

Demazure atoms and characters

- Demazure atoms (standard bases) refine characters, quasi-symmetric Schur polynomials and Schur polynomials
- Demazure characters (key polynomials) are characters of Demazure modules
- Both families are bases of $\mathbb{Z}[x_1, \ldots, x_n]$

Notation

- λ integer partition: e.g. (5, 5, 4, 2, 1, 0, 0)
- α weak composition: e.g. (0, 1, 4, 0, 5, 5, 2)
- Throughout, λ and α have length n and $x = (x_1, \ldots, x_n)$
- $s_{\lambda}(x)$ Schur polynomial
- $\mathcal{A}_{\alpha}(x)$ Demazure atom
- $\mathcal{K}_{\alpha}(x)$ Demazure character

Structure coefficients

The products of a Schur polynomial with a Demazure polynomial have positive expansions:

$$s_{\lambda}(x)\mathcal{A}_{\alpha}(x) = \sum_{\beta} c_{\lambda,\alpha}^{\beta} \mathcal{A}_{\beta}(x)$$
$$s_{\lambda}(x)\mathcal{K}_{\alpha}(x) = \sum_{\beta} d_{\lambda,\alpha}^{\beta} \mathcal{K}_{\beta}(x),$$

where the structure coefficients $c_{\lambda,\alpha}^{\beta}$ and $d_{\lambda,\alpha}^{\beta}$ are non-negative integers. Haglund, Luoto, Mason, and van Willigenburg [3] found a combinatorial rule to compute these coefficients in terms of "skyline tableaux."

References

- [1] A. Borodin and M. Wheeler. Nonsymmetric Macdonald polynomials via integrable vertex models. Transactions of the American Mathematical Society, 375:8353–8397, 2022.
- [2] B. Brubaker, V. Buciumas, D. Bump, and H. P. A. Gustafsson. Colored five-vertex models and Demazure atoms. Journal of Combinatorial Theory, 178:159–195, 2021.
- [3] J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg. Refinements of the Littlewood–Richardson rule. *Transactions of the American* Mathematical Society, 363(3):1665–1686, 2011.
- [4] P. Zinn-Justin. Littlewood–Richardson coefficients and integrable tilings. The Electronic Journal of Combinatorics, 16(1), 2009.

Vertex models for the product of a Schur and Demazure polynomial

Timothy Miller

tcmiller@uwaterloo.ca

Department of Combinatorics and Optimization, University of Waterloo

