Fragmenting any Parallelepiped into a Signed Tiling

Some Important Notation

 $\Pi(N) :=$ (half-open) fundamental paralellepiped of a matrix N $\binom{[r+k]}{r} := \text{size } r \text{ subsets of } \{1, \dots, r+k\}$ $\mathbb{1}_T(\mathbf{p}) := \begin{cases} 1 & \text{if } \mathbf{p} \in T, \\ 0 & \text{otherwise.} \end{cases}$ $S_{\sigma}, \mathcal{T}_{\sigma}, \mathcal{T}^+$, and \mathcal{T}^- are defined below.

Construction

- 1. Fix positive integers r and k as well as an $(r+k) \times (r+k)$ matrix M. We will be "fragmenting" the parallelepiped $\Pi(M)$.
- 2. Define M' to be M with the last k rows negated.
- 3. For each $\sigma \in {[r+k] \choose r}$, define the *fragment* S_{σ} to be the matrix obtained from \dot{M}' by the following procedure:
 - For each column $i \in \sigma$, replace the bottom k entries with 0.
 - For each column $i \notin \sigma$, replace the top r entries with 0.
- 4. For each $\sigma \in \binom{[r+k]}{r}$, let

$$\mathbf{f}_{\sigma} := \bigsqcup_{\mathbf{z} \in \mathbb{Z}^{r+k}} \Pi(S_{\sigma}) + M\mathbf{z}.$$

In other words, \mathcal{T}_{σ} consists of all translations of the fundamental parallelepiped of $S_{\sigma}(M)$ by the lattice generated by M.

5. Define the sets

 $\mathcal{T}^+ := \qquad \left| \begin{array}{ccc} & \mathcal{T}_\sigma & \text{and} & \mathcal{T}^- := & \left| \begin{array}{ccc} & \mathcal{T}_\sigma. \end{array} \right| \right|$ $\sigma \in \binom{[r+k]}{r}, \ \det(S_{\sigma}) > 0 \qquad \qquad \sigma \in \binom{[r+k]}{r}, \ \det(S_{\sigma}) < 0$ We call \mathcal{T}^+ the set of positive tiles and \mathcal{T}^- the set of negative tiles. Joseph Doolittle¹ Alex McDonough²

²Department of Mathematics, University of Oregon ¹Robot Dreams GmbH

Example 1

Let
$$r = k = 1$$
 and
 $M = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$. Then, $M' = \begin{bmatrix} 1 & 2 \\ -1 & -5 \end{bmatrix}$.
 $M = \begin{bmatrix} 3 & 2 & -4 & 1 \\ 1 & 0 & 2 & 2 \\ 2 & 0 & -1 & 1 \\ 0 & 1 & -2 & 3 \end{bmatrix}$. $M' = \begin{bmatrix} 3 & 2 & -4 & 1 \\ 1 & 0 & 2 & 2 \\ -2 & 0 & 1 & -1 \\ 0 & -1 & 2 & -3 \end{bmatrix}$

There are 2 fragments:

$$S_{\{1\}} = \begin{bmatrix} 1 & 0 \\ 0 & -5 \end{bmatrix}$$
 and $S_{\{2\}} = \begin{bmatrix} 0 & 2 \\ -1 & 0 \end{bmatrix}$.

Note that $det(S_{\{1\}}) < 0 < det(S_{\{2\}})$. Thus, $\mathcal{T}^+ = \mathcal{T}_{\{2\}}$ and $\mathcal{T}^- = \mathcal{T}_{\{1\}}$.

In the language of our main theorem, for each point $\mathbf{p} \in \mathbb{R}^2$, we have $f(\mathbf{p}) = 1 - 2 = -1,$

Or

 $f(\mathbf{p}) = 0 - 1 = -1.$

Furthermore,

$$(-1)^k \operatorname{sgn}(\det(M)) = -1$$

Above is a 2-dimensional slice of \mathcal{T}^+ . Each point in \mathbb{R}^4 is covered by 1, 2, or 3 positive tiles indicated by the shading. Can you deduce from our main theorem what a 2dimensional slice of $\mathcal{T}_{\{3,4\}}$ looks like?

that:

 $S_{\{1,2\}}$

Example 2

There are 6 fragments. Here are 2 examples:

	3	2	0	0	$S_{\{2,3\}} =$	0	2	-4	0
	1	0	0	0		0	0	2	0
	0	0	1	-1		-2	0	0	-1
	0	0	2	-3		0	0	0	-3

One can show that $det(S_{\sigma}) > 0$ when $\sigma \neq \{3,4\}$ and $\det(S_{\{3,4\}}) < 0$. This means

$$= \mathcal{T}_{\{1,2\}} \sqcup \mathcal{T}_{\{1,3\}} \sqcup \mathcal{T}_{\{1,4\}} \sqcup \mathcal{T}_{\{2,3\}} \sqcup \mathcal{T}_{\{2,4\}}$$

and $\mathcal{T}^- = \mathcal{T}_{\{3,4\}}.$

For any matrix M, the function $f(\mathbf{p}) : \mathbb{R}^{r+k} \to \mathbb{Z}$, defined by $f(\mathbf{p}) := \left(\sum_{T \in \mathcal{T}^+(M)} \mathbb{1}_T(\mathbf{p})\right) - \left(\sum_{T \in \mathcal{T}^-(M)} \mathbb{1}_T(\mathbf{p})\right),$ is constant with value $(-1)^k \operatorname{sgn}(\det(M))$.

Sketch of Proof Ideas

First, we use the Multi-Row Laplace Expansion Formula to find that $(-1)^k \operatorname{sgn}(\det(M))$ is the average value of f. Thus, we "just" need to show f is constant.

To show that f is constant, we imagine a particle moving in a generic direction. We must prove that whenever the particle enters a positive tile or exits a negative tile, it also exits a positive tile or enters a negative tile.

To prove this, we find a natural way to group collections of facets of tiles such that the property from the previous paragraph holds for each group. This proof uses a variety of linear algebra techniques (including two versions of *Cramer's Rule*), but the main challenge was developing useful notation to keep track of everything.

- pages 1–34, 2024.

Our Main Theorem

Corollary [2]

If M is invertible, and $det(S_{\sigma}(M))$ is nonnegative for all $\sigma \in$ $\binom{[r+k]}{r}$ (or nonpositive for all $\sigma \in \binom{[r+k]}{r}$), then

> $\mathbb{R}^{r+k} = \bigcup \mathcal{T}_{\sigma}.$ $\sigma \! \in \! \binom{[r+k]}{r}$

References

[1] Joseph Doolittle and Alex McDonough. Fragmenting any parallelepiped into a signed tiling. Discrete & Computational Geometry,

[2] Alex McDonough. Higher-Dimensional Sandpile Groups and Matrix-Tree Multijections. PhD thesis, Brown University, 2021.