Fragmenting any Parallelepiped into a Signed Tiling

Joseph Doolittle ${ }^{1}$ Alex McDonough ${ }^{2}$

${ }^{1}$ Robot Dreams GmbH $\quad{ }^{2}$ Department of Mathematics, University of Oregon
Some Important Notation
$\Pi(N):=($ half-open $)$ fundamental paralellepiped of a matrix N
$\binom{[r+k]}{r}:=$ size r subsets of $\{1, \ldots, r+k\}$
$\mathbb{1}_{T}(\mathbf{p}):= \begin{cases}1 & \text { if } \mathbf{p} \in T, \\ 0 & \text { otherwise. }\end{cases}$
$S_{\sigma}, \mathcal{T}_{\sigma}, \mathcal{T}^{+}$, and \mathcal{T}^{-}are defined below.

Construction

1. Fix positive integers r and k as well as an $(r+k) \times(r+k)$ matrix M. We will be "fragmenting" the parallelepiped $\Pi(M)$.
2. Define M^{\prime} to be M with the last k rows negated
3. For each $\sigma \in\binom{[r+k]}{r_{1}}$, define the fragment S_{σ} to be the matrix obtained from M^{r} by the following procedure:

- For each column $i \in \sigma$, replace the bottom k entries with 0 .
- For each column $i \notin \sigma$, replace the top r entries with 0 .

4. For each $\sigma \in\binom{[r+k]}{r}$, let

$$
\mathcal{T}_{\sigma}:=\bigsqcup_{\mathbf{z} \in \mathbb{Z}^{r+k}} \Pi\left(S_{\sigma}\right)+M \mathbf{z}
$$

In other words, \mathcal{T}_{σ} consists of all translations of the fundamental parallelepiped of $S_{\sigma}(M)$ by the lattice generated by M.

```
5. Define the sets
\[
\mathcal{T}^{+}:=\bigsqcup_{\sigma \in\binom{[r+k])}{r}, \operatorname{det}\left(S_{\sigma}\right)>0} \mathcal{T}_{\sigma} \quad \text { and } \quad \mathcal{T}^{-}:=\bigsqcup_{\sigma \in\binom{[r+k]}{r}, \operatorname{det}\left(S_{\sigma}\right)<0} \mathcal{T}_{\sigma} .
\]
```

We call \mathcal{T}^{+}the set of positive tiles and \mathcal{T}^{-}the set of negative tiles.

Example 1

Let $r=k=1$ and

$$
M=\left[\begin{array}{ll}
1 & 2 \\
1 & 5
\end{array}\right] . \text { Then, } \quad M^{\prime}=\left[\begin{array}{cc}
1 & 2 \\
-1 & -5
\end{array}\right]
$$

There are 2 fragments

$$
S_{\{1\}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -5
\end{array}\right] \text { and } S_{\{2\}}=\left[\begin{array}{cc}
0 & 2 \\
-1 & 0
\end{array}\right]
$$

Note that $\operatorname{det}\left(S_{\{1\}}\right)<0<\operatorname{det}\left(S_{\{2\}}\right)$. Thus, $\mathcal{T}^{+}=\mathcal{T}_{\{2\}}$ and $\mathcal{T}^{-}=\mathcal{T}_{\{1\}}$.

On the left are the tiles in $\mathcal{T}_{\{1\}}$ with $\Pi\left(S_{\{1\}}\right)$ in bold. Each point is covered 1 or 2 times. On the right are the tiles in $\mathcal{T}_{\{2\}}$ with $\Pi\left(S_{\{2\}}\right)$ in bold. Each point is covered 0 or 1 times.

In the language of our main theorem, for each point $\mathbf{p} \in \mathbb{R}^{2}$, we have

$$
f(\mathbf{p})=1-2=-1,
$$

or

$$
f(\mathbf{p})=0-1=-1 .
$$

Furthermore,

$$
(-1)^{k} \operatorname{sgn}(\operatorname{det}(M))=-1
$$

Let $r=k=2$ and

$$
M=\left[\begin{array}{cccc}
3 & 2 & -4 & 1 \\
1 & 0 & 2 & 2 \\
2 & 0 & -1 & 1 \\
0 & 1 & -2 & 3
\end{array}\right] . \quad M^{\prime}=\left[\begin{array}{cccc}
3 & 2 & -4 & 1 \\
1 & 0 & 2 & 2 \\
-2 & 0 & 1 & -1 \\
0 & -1 & 2 & -3
\end{array}\right]
$$

There are 6 fragments. Here are 2 examples:

One can show that $\operatorname{det}\left(S_{\sigma}\right)>0$ when $\sigma \neq\{3,4\}$ and $\operatorname{det}\left(S_{\{3,4\}}\right)<0$. This means that:

$$
\begin{gathered}
\mathcal{T}^{+}=\mathcal{T}_{\{1,2\}} \sqcup \mathcal{T}_{\{1,3\}} \sqcup \mathcal{T}_{\{1,4\}} \sqcup \mathcal{T}_{\{2,3\}} \sqcup \mathcal{T}_{\{2,4\}} \\
\text { and } \mathcal{T}^{-}=\mathcal{T}_{\{3,4\}} .
\end{gathered}
$$

Above is a 2-dimensional slice of \mathcal{T}^{+}. Each point in \mathbb{R}^{4} is covered by 1,2 , or 3 posi tive tiles indicated by the shading. Can you deduce from our main theorem what a $2-$ dimensional slice of $\mathcal{T}_{\{3,4\}}$ looks like?

Our Main Theorem

For any matrix M, the function $f(\mathbf{p}): \mathbb{R}^{r+k} \rightarrow \mathbb{Z}$, defined by

$$
f(\mathbf{p}):=\left(\sum_{T \in \mathcal{T}^{+}(M)} \mathbb{1}_{T}(\mathbf{p})\right)-\left(\sum_{T \in \mathcal{T}^{-}(M)} \mathbb{1}_{T}(\mathbf{p})\right)
$$

is constant with value $(-1)^{k} \operatorname{sgn}(\operatorname{det}(M))$.

Sketch of Proof Ideas

First, we use the Multi-Row Laplace Expansion Formula to find that $(-1)^{k} \operatorname{sgn}(\operatorname{det}(M))$ is the average value of f. Thus, we "just" need to show f is constant.

To show that f is constant, we imagine a particle moving in a generic direction. We must prove that whenever the particle enters a positive tile or exits a negative tile, it also exits a positive tile or enters a negative tile.

To prove this, we find a natural way to group collections of facets of tiles such that the property from the previous paragraph holds for each group. This proof uses a variety of linear algebra techniques (including two versions of Cramer's Rule), but the main challenge was developing useful notation to keep track of everything

Corollary [2]

If M is invertible, and $\operatorname{det}\left(S_{\sigma}(M)\right)$ is nonnegative for all $\sigma \in$ $\binom{[r+k]}{r}$ (or nonpositive for all $\sigma \in\binom{[r+k]}{r}$), then

$$
\mathbb{R}^{r+k}=\bigsqcup_{\sigma \in([r+k])} \mathcal{T}_{\sigma}
$$

References

[1] Joseph Doolittle and Alex McDonough. Fragmenting any parallelepiped into a signed tiling. Discrete \& Computational Geometry pages 1-34, 2024
[2] Alex McDonough. Higher-Dimensional Sandpile Groups and Matrix-Tree Multijections. PhD thesis, Brown University, 2021.

