Kromatic quasisymmetric functions

Eric Marberg Hong Kong University of Science and Technology

1. Chromatic/kromatic symmetric/quasisymmetric functions

• All graphs G = (V, E) have finite vertices and simple edges, and are not distinguished up to \cong . A proper coloring of a graph G = (V, E) is a map $\kappa : V \to \mathbb{Z}_{>0}$ with $\kappa(u) \neq \kappa(v) \ \forall \{u, v\} \in E$.

Definition (Stanley, 1995)

The *chromatic symmetric function* of a graph G = (V, E) is the sum over all proper colorings $X_G = \sum_{\kappa} x^{\kappa} = \sum_{\kappa} \prod_{v \in V} x_{\kappa(v)} \in \mathsf{Sym} = (\text{ bounded degree symmetric functions over } \mathbb{Z}).$

• We say that G = (V, E) is an ordered graph if there is a total order < on the vertex set V. In this case let $\operatorname{asc}_G(\kappa)$ be the number of edges $\{u, v\} \in E$ with u < v and $\kappa(u) < \kappa(v)$.

2. Combinatorial Hopf algebras

- Let \mathbb{K} be an integral domain like \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}[q]$, or $\mathbb{Q}(q)$.
- An algebra is a \mathbb{K} -module A with linear product $\nabla : A \otimes A \to A$ and unit $\iota : \mathbb{K} \to A$ maps. A coalgebra is a \mathbb{K} -module A with linear coproduct $\Delta : A \to A \otimes A$ and counit $\epsilon : A \to \mathbb{K}$ maps. The (co)product and (co)unit maps must satisfy several natural associativity axioms.
- A K-module A that is both an algebra and a coalgebra is a *bialgebra* if the coproduct and counit maps are algebra morphisms, and a *Hopf algebra* if it further holds that the identity map

$\mathrm{id}: A \to A$

has a two-sided inverse in the *convolution algebra*, which is the set of K-linear maps $A \to A$ with

unit element $\iota \circ \epsilon$ and product $f * g = \nabla \circ (f \otimes g) \circ \Delta$.

Definition (Shareshian–Wachs, 2010)	
The <i>chromatic quasisymmetric function</i> of an ordered graph G is the sum over all	proper colorings
$X_G(q) = \sum_{\kappa} q^{asc_G(\kappa)} x^\kappa \in QSym[q] = ($ quasisymmetric functions over	$\mathbb{Z}[q]$).

• A (proper) set-valued coloring of G is a map $\kappa: V \to \{\text{finite nonempty subsets of integers} > 0 \}$ with $\kappa(u) \cap \kappa(v) = \emptyset$ for all edges $\{u, v\} \in E$.

Definition (Crew–Pechenik–Spirkl, 2023)

The kromatic symmetric function of a graph G = (V, E) is the sum over all set-valued colorings $\overline{X}_G = \sum_{\kappa} x^{\kappa} = \sum_{\kappa} \prod_{v \in V} \prod_{i \in \kappa(v)} x_i \in \mathfrak{mSym} = (\text{ arbitrary symmetric functions over } \mathbb{Z}).$

• If $G = K_n$ is the *complete graph* on $\{1, 2, \dots, n\}$ and $e_n = \sum_{1 \le i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$ then $X_G = n! \cdot e_n$ and $X_G(q) = [n]_q! \cdot e_n$ and $\overline{X}_G = n! \cdot \sum_{r>n} {r \choose n} e_r$.

• Stanley-Stembridge conjecture: if P is a (3+1)-free poset and G = inc(P) then X_G is e-positive.

Definition (mildly generalizing Aguiar–Bergeron–Sottile, 2006)

A combinatorial Hopf algebra is a Hopf algebra H with an algebra morphism $\zeta: H \to \mathbb{K}[t]$ such that $\zeta(\cdot)|_{t\mapsto 0} = ($ the counit of H).

A morphism $(H,\zeta) \to (H',\zeta')$ is a Hopf algebra morphism $\phi: H \to H'$ with $\zeta = \zeta' \circ \phi$.

- A power series $f \in \mathbb{K}[x_1, x_2, \ldots]$ is *quasisymmetric* if $[x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_k^{\alpha_k}]f = [x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2}\cdots x_{i_k}^{\alpha_k}]f$ for all $1 \le i_1 < i_2 < \cdots < i_k$ and $\alpha \in \mathbb{Z}^k$.
- The algebra of quasisymmetric functions **QSym** over **K** has a combinatorial Hopf algebra structure for the algebra morphism $\zeta_{\text{QSym}} : \mathbb{QSym} \to \mathbb{K}[t]$ setting $x_1 \mapsto t$ and all other variables to zero.
 - The coproduct of **QSym** corresponds informally to the "variable doubling operation"

 $\Delta : f(x_1, x_2, \dots) \mapsto f(x_1, x_2, \dots, y_1, y_2, \dots).$

Theorem (mildly generalizing Aguiar–Bergeron–Sottile, 2006)

There is a unique morphism $\Phi: (H,\zeta) \to (\mathsf{QSym},\zeta_{\mathsf{QSym}})$ for each combinatorial Hopf algebra (H,ζ) .

3. Hopf algebraic constructions

4. Quasisymmetric versions of kromatic symmetric functions

• The free module **Graphs** of finite simple graphs (up to \cong) is a combinatorial Hopf algebra with

 $\nabla(G_1 \otimes G_2) = G_1 \sqcup G_2, \qquad \Delta(G) = \sum G|_S \otimes G|_T, \qquad \zeta(G) = 0^{|E(G)|} t^{|V(G)|}.$ $S \sqcup T = V(G)$

The coproduct sums over **disjoint** partitions of vertices, with $G|_S$ denoting the induced subgraph.

Proposition (Aguiar–Bergeron–Sottile, 2006)

The unique morphism (Graphs, ζ) \rightarrow (QSym, ζ_{QSym}) sends each graph $G \mapsto X_G$.

• The free module **OGraphs** of ordered graphs (up to \cong) is likewise a combinatorial Hopf algebra with $\nabla(G_1 \otimes G_2) = G_1 \sqcup G_2, \quad \Delta(G) = \sum q^{\mathsf{asc}_G(S,T)} G|_S \otimes G|_T, \quad \zeta(G) = 0^{|E(G)|} t^{|V(G)|}$ $S \sqcup T = V(G)$ when $\operatorname{asc}_{G}(S,T) = |\{(s,t) \in S \times T : \{s,t\} \in E(G) \text{ and } s < t\}|.$

Proposition

The unique morphism (OGraphs, ζ) \rightarrow (QSym, ζ_{QSym}) sends each ordered graph $G \mapsto X_G(q)$.

• There is a similar construction of \overline{X}_G using combinatorial Hopf algebras.

Theorem

Suppose we redefine the coproduct of **Graphs** to be the sum over arbitrary (rather than disjoint) unions:

• Assume G is an ordered graph. There are two simultaneous generalizations of $X_G(q)$ and \overline{X}_G . Neither comes from a combinatorial Hopf algebra but both are natural, in different ways.

Definition

For an ordered graph G let $\overline{L}_G(q) = \sum_{\kappa} q^{\operatorname{asc}_G(\max \circ \kappa)} x^{\kappa} \in \operatorname{\mathsf{QSym}}[q]$, summing over set-valued colorings.

- Changing ascents-to-descents or max-to-min in this definition give up to 4 different power series, but the distinct constructions are all related by simple automorphisms of QSym[q].
- If $G = K_n$ is the complete graph on $\{1, 2, \ldots, n\}$ then $\overline{L}_G(q) = [n]_q! \cdot \sum_{r>n} {r \choose n} e_r$.

Theorem

The power series $L_G(q)$ is always *multifundamental positive*, with a particularly simple mulifundamental expansion into \overline{L}_{α} 's when $G = \operatorname{inc}(P)$ is the incomparability graph of a finite poset $P \subset \mathbb{Z}$.

Theorem

However, the power series $L_G(q)$ is symmetric in its x_i -variables if and only if G is a *cluster graph*.

• The second QSym-version of X_G is related to functions $X_G(\mathbf{x}, q, \mu)$ studied by Hwang (2022).

Definition

$$\Delta(G) = \sum_{S \cup T = V(G)} G|_S \otimes G|_T.$$

Then the unique morphism (Graphs, ζ) \rightarrow (QSym, ζ_{QSym}) sends each graph $G \mapsto X_G$.

Moreover, this modified Hopf algebra structure on **Graphs** is "isomorphic" to the original one.

• Technical caveats: for the isomorphism just mentioned to hold, we must replace Graphs with its *completion* **mGraphs** (whose elements are infinite linear combinations of graphs) and work with the analogues of Hopf algebras in the category of *linearly compact* K-modules.

Corollary X_G expands positively into the *multifundamental quasisymmetric functions* L_{α} of Lam–Pylyavskyy.

For an ordered graph G consider the sum over all set-valued colorings $\overline{X}_G(q) = \sum_{\kappa} q^{\mathsf{asc}_G(\kappa)} x^{\kappa} = \sum_{\mu: V(G) \to \mathbb{Z}_{>0}} X_G(\mathbf{x}, q, \mu) \in \mathsf{QSym}[\![q]\!]$ where $\operatorname{asc}_G(\kappa)$ counts all (u, v, i, j) with $\{u, v\} \in E(G)$, $i \in \kappa(u)$, $j \in \kappa(v)$, u < v, and i < j.

• In general $\overline{X}_G(q)$ is not multifundamental-positive, but it does have a different positivity property.

• A natural unit interval order is a poset P on a finite subset of $\mathbb{Z}_{>0}$ that is (3+1)- and (2+2)-free. Assume P is such a poset. When q = 1 the following recovers a theorem of Crew–Pechenik–Spirkl:

Theorem

If G = inc(P) is the incomparability graph of a natural unit interval order P then \overline{X}_G has an explicit positive expansion into symmetric Grothendieck functions $\overline{s}_{\lambda} = \sum_{T \in \text{SetSSYT}(\lambda)} (-1)^{|T| - |\lambda|} x^{T}$.