Kromatic quasisymmetric functions

Eric Marberg Hong Kong Univesisty of Sceience and Technolegy

1. Chromatic/kromatic symmetric/quasisymmetric functions

- All graphs $G=(V, E)$ have finite vertices and simple edges, and are not distinguished up to \cong. A proper coloring of a graph $G=(V, E)$ is a map $\kappa: V \rightarrow \mathbb{Z}_{>0}$ with $\kappa(u) \neq \kappa(v) \forall\{u, v\} \in E$.

> Definition (Stanley, 1995)

The chromatic symmetric function of a graph $G=(V, E)$ is the sum over all proper colorings $X_{G}=\sum_{\kappa} x^{\kappa}=\sum_{\kappa} \prod_{v \in V} x_{\kappa(v)} \in \operatorname{Sym}=($ bounded degree symmetric functions over $\mathbb{Z})$.

- We say that $G=(V, E)$ is an ordered graph if there is a total order <on the vertex set V In this case let $\operatorname{asc}_{G}(\kappa)$ be the number of edges $\{u, v\} \in E$ with $u<v$ and $\kappa(u)<\kappa(v)$.

Definition (Shareshian-Wachs, 2016)
The chromatic quasisymmetric function of an ordered graph G is the sum over all proper colorings $X_{G}(q)=\sum_{\kappa} a^{\operatorname{scc}(\kappa)} x^{\kappa} \in \operatorname{QSym}[q]=($ quasisymmetric functions over $\mathbb{Z}[q])$.

- A (proper) set-valued coloring of G is a map $\kappa: V \rightarrow\{$ finite nonempty subsets of integers $>0\}$ with $\kappa(u) \cap \kappa(v)=\varnothing$ for all edges $\{u, v\} \in E$.

Definition (Crew-Pechenik-Spirkl, 2023)
The kromatic symmetric function of a graph $G=(V, E)$ is the sum over all set-valued colorings $\bar{X}_{G}=\sum_{\kappa} x^{\kappa}=\sum_{\kappa} \prod_{v \in V} \prod_{i \in \kappa(v)} x_{i} \in \mathfrak{m S y m}=($ arbitrary symmetric functions over $\mathbb{Z})$.

- If $G=K_{n}$ is the complete graph on $\{1,2, \ldots, n\}$ and $e_{n}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$ then $X_{G}=n!\cdot e_{n} \quad$ and $\quad X_{G}(q)=[n] q!\cdot e_{n} \quad$ and $\quad \bar{X}_{G}=n!\cdot \sum_{r \geq n}\left\{\begin{array}{l}r \\ n\end{array}\right\} e_{r}$.
- Stanley-Stembridge conjecture: if P is a $(3+1)$-free poset and $G=\operatorname{inc}(P)$ then X_{G} is e-positive.

3. Hopf algebraic constructions

- The free module Graphs of finite simple graphs (up to \cong) is a combinatorial Hopf algebra with

$$
\nabla\left(G_{1} \otimes G_{2}\right)=G_{1} \sqcup G_{2}, \quad \Delta(G)=\left.\left.\sum_{S \sqcup T=V(G)} G\right|_{S} \otimes G\right|_{T}, \quad \zeta(G)=0^{|E(G)|} t^{|V(G)|} .
$$

The coproduct sums over disjoint partitions of vertices, with $\left.G\right|_{S}$ denoting the induced subgraph.
Proposition (Aguiar-Bergeron-Sottile, 2006)
The unique morphism (Graphs, $\zeta) \rightarrow\left(\right.$ QSym, $\left.\zeta_{Q S y m}\right)$ sends each graph $G \mapsto X_{G}$.

- The free module OGraphs of ordered graphs (up to \cong) is likewise a combinatorial Hopf algebra with $\nabla\left(G_{1} \otimes G_{2}\right)=G_{1} \sqcup G_{2}, \quad \Delta(G)=\left.\left.\sum_{S \cup T=V(G)} q^{\operatorname{asc}_{G}(S, T)} G\right|_{S} \otimes G\right|_{T}, \quad \zeta(G)=0^{|E(G)|} t^{V(G) \mid}$
when $\operatorname{asc}_{G}(S, T)=\mid\{(s, t) \in S \times T:\{s, t\} \in E(G)$ and $s<t\} \mid$.

Proposition

The unique morphism (OGraphs, $\zeta) \rightarrow\left(\mathrm{QSym}, \zeta_{Q S y m}\right)$ sends each ordered graph $G \mapsto X_{G}(q)$.

- There is a similar construction of \bar{X}_{G} using combinatorial Hopf algebras.

Theorem

Suppose we redefine the coproduct of Graphs to be the sum over arbitrary (rather than disjoint) unions:

$$
\Delta(G)=\left.\left.\sum_{S \cup T=V(G)} G\right|_{S} \otimes G\right|_{T}
$$

Then the unique morphism (Graphs, $\zeta) \rightarrow\left(\mathrm{QSym}, \zeta_{Q S y m}\right)$ sends each graph $G \mapsto \bar{X}_{G}$.
Moreover, this modified Hopf algebra structure on Graphs is "isomorphic" to the original one.

- Technical caveats: for the isomorphism just mentioned to hold, we must replace Graphs with its completion \mathfrak{m} Graphs (whose elements are infinite linear combinations of graphs) and work with the analogues of Hopf algebras in the category of linearly compact \mathbb{K}-modules.

Corollary

\bar{X}_{G} expands positively into the multifundamental quasisymmetric functions \bar{L}_{α} of Lam-Pylyavskyy.

2. Combinatorial Hopf algebras

- Let \mathbb{K} be an integral domain like $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}[q]$, or $\mathbb{Q}(q)$.
- An algebra is a \mathbb{K}-module A with linear product $\nabla: A \otimes A \rightarrow A$ and unit $\iota: \mathbb{K} \rightarrow A$ maps. A coalgebra is a \mathbb{K}-module A with linear coproduct $\Delta: A \rightarrow A \otimes A$ and counit $\epsilon: A \rightarrow \mathbb{K}$ maps. The (co)product and (co)unit maps must satisfy several natural associativity axioms.
- A \mathbb{K}-module A that is both an algebra and a coalgebra is a bialgebra if the coproduct and counit maps are algebra morphisms, and a Hopf algebra if it further holds that the identity map

$$
\text { id }: A \rightarrow A
$$

has a two-sided inverse in the convolution algebra, which is the set of \mathbb{K}-linear maps $A \rightarrow A$ with unit element $\iota \circ \epsilon \quad$ and \quad product $f * g=\nabla \circ(f \otimes g) \circ \Delta$.

> Definition (mildly generalizing Aguiar-Bergeron-Sottile, 2006)

A combinatorial Hopf algebra is a Hopf algebra H with an algebra morphism $\zeta: H \rightarrow \mathbb{K} \llbracket t \rrbracket$ such that $\left.\zeta(\cdot)\right|_{t \mapsto 0}=($ the counit of $H)$.
A morphism $(H, \zeta) \rightarrow\left(H^{\prime}, \zeta^{\prime}\right)$ is a Hopf algebra morphism $\phi: H \rightarrow H^{\prime}$ with $\zeta=\zeta^{\prime} \circ \phi$.

- A power series $f \in \mathbb{K} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ is quasisymmetric if

$$
\left[x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}\right] f=\left[x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}\right] f \quad \text { for all } 1 \leq i_{1}<i_{2}<\cdots<i_{k} \text { and } \alpha \in \mathbb{Z}^{k}
$$

- The algebra of quasisymmetric functions $Q S y m$ over \mathbb{K} has a combinatorial Hopf algebra structure for the algebra morphism $\zeta_{Q S y m}:$ QSym $\rightarrow \mathbb{K} \llbracket t \rrbracket$ setting $x_{1} \mapsto t$ and all other variables to zero. The coproduct of QSym corresponds informally to the "variable doubling operation"

$$
\Delta: f\left(x_{1}, x_{2}, \ldots\right) \mapsto f\left(x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots\right)
$$

Theorem (mildly generalizing Aguiar-Bergeron-Sottile, 2006)
There is a unique morphism $\Phi:(H, \zeta) \rightarrow\left(\right.$ QSym, $\left.\zeta_{Q S y m}\right)$ for each combinatorial Hopf algebra (H, ζ).
4. Quasisymmetric versions of kromatic symmetric functions

- Assume G is an ordered graph. There are two simultaneous generalizations of $X_{G}(q)$ and \bar{X}_{G}. Neither comes from a combinatorial Hopf algebra but both are natural, in different ways.

Definition
For an ordered graph G let $\bar{L}_{G}(q)=\sum_{\kappa} q^{\operatorname{asc}(\max \circ \kappa)} x^{\kappa} \in \operatorname{QSym}[q]$, summing over set-valued colorings.

- Changing ascents-to-descents or max-to-min in this definition give up to 4 different power series, but the distinct constructions are all related by simple automorphisms of $\mathrm{QSym}[q]$.
- If $G=K_{n}$ is the complete graph on $\{1,2, \ldots, n\}$ then $\bar{L}_{G}(q)=[n] q$! $\cdot \sum_{r \geq n}\left\{\begin{array}{l}r \\ n\end{array}\right\} e_{r}$.

Theorem

The power series $\bar{L}_{G}(q)$ is always multifundamental positive, with a particularly simple mulifundamental expansion into \bar{L}_{α} 's when $G=\operatorname{inc}(P)$ is the incomparability graph of a finite poset $P \subset \mathbb{Z}$.

Theorem
However, the power series $\bar{L}_{G}(q)$ is symmetric in its x_{i}-variables if and only if G is a cluster graph.

- The second QSym-version of \bar{X}_{G} is related to functions $X_{G}(\mathbf{x}, q, \mu)$ studied by Hwang (2022).

Definition
For an ordered graph G consider the sum over all set-valued colorings

$$
\bar{X}_{G}(q)=\sum_{\kappa} q^{\operatorname{asc}(\kappa)} x^{\kappa}=\sum_{\mu: V(G) \rightarrow \mathbb{Z}_{>0}} X_{G}(\mathbf{x}, q, \mu) \in \operatorname{QSym} \llbracket q \rrbracket
$$

where $\operatorname{asc}_{G}(\kappa)$ counts all (u, v, i, j) with $\{u, v\} \in E(G), i \in \kappa(u), j \in \kappa(v), u<v$, and $i<j$.

- In general $\bar{X}_{G}(q)$ is not multifundamental-positive, but it does have a different positivity property.
- A natural unit interval order is a poset P on a finite subset of $\mathbb{Z}_{>0}$ that is $(3+1)$ - and $(2+2)$-free. Assume P is such a poset. When $q=1$ the following recovers a theorem of Crew-Pechenik-Spirkl:

Theorem

If $G=\operatorname{inc}(P)$ is the incomparability graph of a natural unit interval order P then \bar{X}_{G} has an explicit positive expansion into symmetric Grothendieck functions $\bar{s}_{\lambda}=\sum_{T \in \operatorname{SetSSYT}(\lambda)}(-1)^{|T|-|\lambda|} x^{T}$.

