FROM POSET POLYTOPES AND PIPE DREAMS TO FLAG VARIETIES AND REPRESENTATIONS

Ievgen Makedonskyi Beijing Institute of Mathematical Sciences and Applications (BIMSA)

Igor Makhlin Technische Universität Berlin

arXiv:2211.03499 (type A, semi-infinite type A)

arXiv:2402.16207 (types C and B)arXiv:2403.09959 (extended abstract)

TYPE A

The poset polytopes The key bijection **Gelfand–Tsetlin poset:** $P = \{(i, j)\}_{1 \le i \le j \le n}$ with order relation **Pipe dreams:** every $M \subset P$ defines permutation $w_M = \prod_{(i,j) \in M} (ij)$ in S_n $(i,j) \preceq (i',j')$ if and only if $i \leq i'$ and $j \leq j'$. (ordered first by i and then by j). In fact, if one draws a "pipe" entering (i, n)and then turning in zigzag fashion at elements of M and at the (j, j), then it Fix $O \subset P$. For lower set $J \subset P$ we define will exit at $(1, w_M(i))$. These pipes form the *pipe dream* of M. $M_O(J) = (J \cap O) \cup \max_{\prec} (J).$ **Example:** $O = \{(1, 1), (2, 2), (1, 2), (1, 4)\},\$ **Example:** for $O = \{(1, 2), (2, 2), (3, 3)\},\$ $J = \{(1, 1), (2, 2), (1, 2), (2, 3), (1, 3), (1, 4)\},\$ $J = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3), (1, 4)\}$ we get $w_{M_O(J)} = (11)(12)(14)(22)(23) = (4,3,1,2)$ is found from the pipe dream

Marked chain-order polytopes (Fang, Fourier): for $\mathfrak{sl}_n(\mathbb{C})$ fundamental weight ω_k let $\mathcal{Q}_O(\omega_k)$ be the convex hull of all $\mathbf{1}_{M_O(J)} \in \mathbb{R}^P$ s.t. k = k(J)(number of $(i, i) \in J$). For dominant $\lambda = (a_1, \ldots, a_{n-1})$ set

 $\mathcal{Q}_O(\lambda) = a_1 \mathcal{Q}_O(\omega_1) + \dots + a_{n-1} \mathcal{Q}_O(\omega_{n-1}) \subset \mathbb{R}^P.$

For O = P this is the **Gelfand–Tsetlin polytope**, for $O = \emptyset$ it is the **FFLV polytope**, other cases interpolate between these two.

Theorem. $J \mapsto \{w_{M_O(J)}(1), \ldots, w_{M_O(J)}(k(J))\}$ is a bijection between lower sets in P and subsets of [1, n].

Let us consider a version of this map but to ordered tuples and twisted by w_O : $\psi: J \mapsto (w_O^{-1} w_{M_O(J)}(1), \dots, w_O^{-1} w_{M_O(J)}(k(J))).$

APPLICATIONS TO LIE THEORY

Toric degenerations

The **Plücker ideal** I in $S = \mathbb{C}[X_{i_1,...,i_k}]_{1 \le i_1 < \cdots < i_k \le n, k \in [1,n-1]}$ gives a multiprojective realization of the (complete) flag variety F_n .

The toric variety of $\mathcal{Q}_O(\lambda)$ is realized by a toric ideal I_O in the ring $R = \mathbb{C}[X_J]_{k(J) \in [1, n-1]}$.

Theorem. The isomorphism $X_J \mapsto X_{\psi(J)}$ from R to S maps I_O to an initial ideal of I. This realizes the toric variety of $\mathcal{Q}_O(\lambda)$ as a flat degeneration of F_n .

For O = P this is the **Gonciulea–Lakshmibai degeneration**.

PBW-monomial bases

Positive roots of A_{n-1} are labeled by pairs $1 \leq i < j \leq n$, let $f_{i,j} \in \mathfrak{sl}_n(\mathbb{C})$ be the corresponding negative root vector. A point $x \in \mathbb{Z}_{>0}^P$ defines a PBW monomial $f^x = \prod f_{i,j}^{x_{i,j}}$ (ordered first by *i* and then by *j*).

Lemma. For every J and $i \in [1, k(J)]$ one has $\psi(J)_i \ge i$. Furthermore, one can define a unimodular transformation ξ of \mathbb{Z}^P such that $\xi(\mathbf{1}_{M_O(J)}) = \mathbf{1}_{\{(i,\psi(J)_i), i \in [1,k(J)]\}}$ for every J.

Theorem. The vectors $f^x v_\lambda$ with $x \in \xi(\mathcal{Q}_O(\lambda)) \cap \mathbb{Z}^P$ form a basis in the irreducible representation V_{λ} with highest weight v_{λ} .

For $O = \emptyset$ this is the **FFLV basis**.

Standard monomial theories

Theorem. Products $X_{\psi(J_1)} \dots X_{\psi(J_m)}$ with $J_1 \supset \dots \supset J_m$ map to a basis in the Plücker algebra S/I.

Each such standard monomial defines a Young tableau with columns $\psi(J_i)$:

$\psi(J_1)_1$	$\psi(J_2)_1$	• • •	$\psi(J_m)_1$
• • •	• • •	• • •	• • •
• • •	$\psi(J_2)_{k(J_2)}$	• • •	
$\psi(J_1)_{k(J_1)}$			

For O = P these are the **semistandard tableaux**, for $O = \emptyset$ one gets the **PBW-semistandard tableaux**.

TYPE C

Combinatorics

For type C the poset P consists of (i, j) with $i \in [1, n]$ and $j \in [i, n] \cup [-n, -i]$ and we set $(i_1, j_1) \preceq (i_2, j_2)$ if and only if $i_1 \leq i_2$ and j_1 precedes j_2 in the order $1,\ldots,n,-n,\ldots,-1.$

For $O \subset P$ and lower set J we define $M_O(J)$ and $w_{M_O(J)}$ similarly to type A, the values $w_{M_O(J)}(\pm i)$ are determined by the two pipes entering (i, -i). **Example:** $O = \{(1, 1), (2, 2), (2, 3), (1, 3)\}, J$ generated by (3, -3), (1, -2)

Lie theory

• In type C the Plücker ideal lies in the polynomial ring in variables X_{i_1,\ldots,i_k} with $\{i_1, \ldots, i_k\}$ an admissible subset. This lets us define **toric** degenerations of the symplectic flag variety and standard monomial **theories** for the corresponding Plücker algebra.

$w_{M_O(J)}(1, 2, 3, -3, -2, -1) = (-2, 1, -3, 2, 3, -1)$

) $\overset{(-,-)}{\ltimes}$ $\overset{\leftarrow}{(2,3)}$

Theorem. The map $J \mapsto \{w_O^{-1} w_{M_O(J)}(1), \ldots, w_O^{-1} w_{M_O(J)}(k(J))\}$ is a bijection between lower sets in P and admissible subsets of $A \subset [1, n]$: those for which $|A \cap [-i, i]| \leq i$ for all $i \in [1, n]$.

We also define the polytopes $\mathcal{Q}_O(\lambda)$ as in type A: for fundamental weights as convex hulls of the $\mathbf{1}_{M_O(J)}$ and for dominant weights as Minkowski sums. This again interpolates between the symplectic GT and FFLV polytopes.

- An important feature of type C is the intermediate degeneration of the flag variety which is itself a **Schubert variety of type** A_{2n-1} . This Schubert variety subsequently degenerates into the toric varieties of all $\mathcal{Q}_O(\lambda)$.
- Furthermore, type C_n positive roots are enumerated by P. This lets us associate PBW monomials with points of \mathbb{R}^P and obtain a
 - **PBW-monomial basis** in V_{λ} given by a unimodular transform of $\mathcal{Q}_O(\lambda)$.
- Moreover, one can realize the $\mathcal{Q}_O(\lambda)$ as **Newton–Okounkov bodies** of the flag variety (this is also true in type A).
- Special cases for O = P and $O = \emptyset$: Caldero's toric degeneration given by the type C Berenstein–Zelevinsky polytope, de Concini's symplectic SSYTs, the symplectic FFLV basis and Kaveh's Newton–Okounkov bodies.