FROM POSET POLYTOPES AND PIPE DREAMS TO FLAG VARIETIES AND REPRESENTATIONS

Ievgen Makedonskyi
Beijing Institute of Mathematical Sciences and Applications (BIMSA)

Igor Makhlin
Technische Universität Berlin

arXiv:2402.16207 (types C and B)
arXiv:2403.09959 (extended abstract)

TYPE A

The poset polytopes

Gelfand-Tsetlin poset: $P=\{(i, j)\}_{1 \leq i \leq j \leq n}$ with order relation $(i, j) \preceq\left(i^{\prime}, j^{\prime}\right)$ if and only if $i \leq i^{\prime}$ and $j \leq j^{\prime}$.
Fix $O \subset P$. For lower set $J \subset P$ we define

$$
M_{O}(J)=(J \cap O) \cup \max _{\prec}(J) .
$$

Example: for $O=\{(1,2),(2,2),(3,3)\}$,
$J=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3),(1,4)\}$ we get

$$
\begin{array}{lllll}
& (2,2) & & (3,3) & (4,4) \\
(1,2) & (2,3) & (3,4) & \\
& (1,3) & \\
& (1,4) & &
\end{array}
$$

Marked chain-order polytopes (Fang, Fourier): for $\mathfrak{s l}_{n}(\mathbb{C})$ fundamental weight ω_{k} let $\mathcal{Q}_{O}\left(\omega_{k}\right)$ be the convex hull of all $\mathbf{1}_{M_{O}(J)} \in \mathbb{R}^{P}$ s.t. $k=k(J)$ (number of $(i, i) \in J)$. For dominant $\lambda=\left(a_{1}, \ldots, a_{n-1}\right)$ set

$$
\mathcal{Q}_{O}(\lambda)=a_{1} \mathcal{Q}_{O}\left(\omega_{1}\right)+\cdots+a_{n-1} \mathcal{Q}_{O}\left(\omega_{n-1}\right) \subset \mathbb{R}^{P}
$$

For $O=P$ this is the Gelfand-Tsetlin polytope, for $O=\varnothing$ it is the FFLV polytope, other cases interpolate between these two.

The key bijection

Pipe dreams: every $M \subset P$ defines permutation $w_{M}=\prod_{(i, j) \in M}(i j)$ in S_{n} (ordered first by i and then by j). In fact, if one draws a "pipe" entering (i, n) and then turning in zigzag fashion at elements of M and at the (j, j), then it will exit at $\left(1, w_{M}(i)\right)$. These pipes form the pipe dream of M.
Example: $O=\{(1,1),(2,2),(1,2),(1,4)\}$,
$J=\{(1,1),(2,2),(1,2),(2,3),(1,3),(1,4)\}$,
$w_{M_{O}(J)}=(11)(12)(14)(22)(23)=(4,3,1,2)$ is found from the pipe dream

Theorem. $J \mapsto\left\{w_{M_{O}(J)}(1), \ldots, w_{M_{O}(J)}(k(J))\right\}$ is a bijection between lower sets in P and subsets of $[1, n]$.
Let us consider a version of this map but to ordered tuples and twisted by w_{O} : $\psi: J \mapsto\left(w_{O}^{-1} w_{M_{O}(J)}(1), \ldots, w_{O}^{-1} w_{M_{O}(J)}(k(J))\right)$.

APPLICATIONS TO LIE THEORY

Toric degenerations

The Plücker ideal I in $S=\mathbb{C}\left[X_{i_{1}, \ldots, i_{k}}\right]_{1 \leq i_{1}<\cdots<i_{k} \leq n, k \in[1, n-1]}$ gives a multiprojective realization of the (complete) flag variety F_{n}.
The toric variety of $\mathcal{Q}_{O}(\lambda)$ is realized by a toric ideal I_{O} in the ring $R=\mathbb{C}\left[X_{J}\right]_{k(J) \in[1, n-1]}$.
Theorem. The isomorphism $X_{J} \mapsto X_{\psi(J)}$ from R to S maps I_{O} to an initial ideal of I. This realizes the toric variety of $\mathcal{Q}_{O}(\lambda)$ as a flat degeneration of F_{n}. For $O=P$ this is the Gonciulea-Lakshmibai degeneration.

PBW-monomial bases

Positive roots of A_{n-1} are labeled by pairs $1 \leq i<j \leq n$, let $f_{i, j} \in \mathfrak{s l}_{n}(\mathbb{C})$ be the corresponding negative root vector. A point $x \in \mathbb{Z}_{\geq 0}^{P}$ defines a PBW monomial $f^{x}=\prod f_{i, j}^{x_{i, j}}$ (ordered first by i and then by \bar{j}).
Lemma. For every J and $i \in[1, k(J)]$ one has $\psi(J)_{i} \geq i$. Furthermore, one can define a unimodular transformation ξ of \mathbb{Z}^{P} such that
$\xi\left(\mathbf{1}_{M_{O}(J)}\right)=\mathbf{1}_{\left\{\left(i, \psi(J)_{i}\right), i \in[1, k(J)]\right\}}$ for every J.
Theorem. The vectors $f^{x} v_{\lambda}$ with $x \in \xi\left(\mathcal{Q}_{O}(\lambda)\right) \cap \mathbb{Z}^{P}$ form a basis in the irreducible representation V_{λ} with highest weight v_{λ}.
For $O=\varnothing$ this is the FFLV basis.

Standard monomial theories

Theorem. Products $X_{\psi\left(J_{1}\right)} \ldots X_{\psi\left(J_{m}\right)}$ with $J_{1} \supset \cdots \supset J_{m}$ map to a basis in the Plücker algebra S / I.

Each such standard monomial defines a Young tableau with columns $\psi\left(J_{i}\right)$

For $O=P$ these are the semistandard tableaux, for $O=\varnothing$ one gets the PBW-semistandard tableaux.

TYPE C

Combinatorics

For type C the poset P consists of (i, j) with $i \in[1, n]$ and $j \in[i, n] \cup[-n,-i]$ and we set $\left(i_{1}, j_{1}\right) \preceq\left(i_{2}, j_{2}\right)$ if and only if $i_{1} \leq i_{2}$ and j_{1} precedes j_{2} in the order $1, \ldots, n,-n, \ldots,-1$.
For $O \subset P$ and lower set J we define $M_{O}(J)$ and $w_{M_{O}(J)}$ similarly to type A, the values $w_{M_{O}(J)}(\pm i)$ are determined by the two pipes entering $(i,-i)$.
Example: $O=\{(1,1),(2,2),(2,3),(1,3)\}, J$ generated by $(3,-3),(1,-2)$, $w_{M_{O}(J)}(1,2,3,-3,-2,-1)=(-2,1,-3,2,3,-1)$

Theorem. The map $J \mapsto\left\{w_{O}^{-1} w_{M_{O}(J)}(1), \ldots, w_{O}^{-1} w_{M_{O}(J)}(k(J))\right\}$ is a bijection between lower sets in P and admissible subsets of $A \subset[1, n]$: those for which $|A \cap[-i, i]| \leq i$ for all $i \in[1, n]$.
We also define the polytopes $\mathcal{Q}_{O}(\lambda)$ as in type A: for fundamental weights as convex hulls of the $\mathbf{1}_{M_{O}(J)}$ and for dominant weights as Minkowski sums. This again interpolates between the symplectic GT and FFLV polytopes.

Lie theory

- In type C the Plücker ideal lies in the polynomial ring in variables $X_{i_{1}, \ldots, i_{k}}$ with $\left\{i_{1}, \ldots, i_{k}\right\}$ an admissible subset. This lets us define toric degenerations of the symplectic flag variety and standard monomial theories for the corresponding Plücker algebra.
- An important feature of type C is the intermediate degeneration of the flag variety which is itself a Schubert variety of type $\mathrm{A}_{2 n-1}$. This Schubert variety subsequently degenerates into the toric varieties of all $\mathcal{Q}_{O}(\lambda)$.
- Furthermore, type C_{n} positive roots are enumerated by P. This lets us associate PBW monomials with points of \mathbb{R}^{P} and obtain a
PBW-monomial basis in V_{λ} given by a unimodular transform of $\mathcal{Q}_{O}(\lambda)$
- Moreover, one can realize the $\mathcal{Q}_{O}(\lambda)$ as Newton-Okounkov bodies of the flag variety (this is also true in type A).
- Special cases for $O=P$ and $O=\varnothing$: Caldero's toric degeneration given by the type C Berenstein-Zelevinsky polytope, de Concini's symplectic SSYTs, the symplectic FFLV basis and Kaveh's Newton-Okounkov bodies.

