Claudia Alfes, Joshua Maglione, Christopher Voll
Universities of (Bielefeld (DE), Galway (IRE), Bielefeld (DE))

Affine building for $S L_{n}\left(\mathbb{Q}_{p}\right)$
n-1-dimensional simplicial complex on homothety classes of lattices [Λ] in \mathbb{Q}_{p}^{n}. Example for $S L_{2}\left(\mathbb{Q}_{2}\right)$: the Bruhat-Tits-tree

Good to know:

- Links are spherical buildings for $\operatorname{SL}_{n}\left(\mathbb{F}_{P}\right)$
- Coxeter type A for symplectic groups $\mathrm{SP}_{2 n}\left(\mathbb{Q}_{p}\right)$

Ehrhart-Hecke zeta functions of type A

Definition (AMV)
Type-A Ehrhart-Hecke zeta function
$\mathcal{Z}_{n, \ell}^{\mathrm{A}}(s):=\sum_{\mathbb{Z}_{p}^{n} \leq \Lambda \leq \mathbb{Q}_{p}^{n}} \frac{c_{\ell}^{\wedge}(P)}{c_{\ell}^{\Lambda_{0}}(P)}\left|\Lambda: \mathbb{Z}_{p}^{n}\right|^{-s}$ Theorem (AMV)
With $\zeta_{p}(s)=\frac{1}{1-p^{-s}}$ (Riemann): $\mathcal{Z}_{n, \ell}^{\mathrm{A}}(s)=\zeta_{p}(s-\ell) \prod_{k=1}^{n-1} \zeta_{p}(s-k)$

Note independence of P ! Illustrated in the example \rightarrow.

Definition (AMV)
Type-C Ehrhart-Hecke zeta $\mathcal{Z}_{n, \ell}^{C}(s):=\sum_{\mathbb{Z}_{p}^{n} \leq \Lambda \leq \mathbb{Q}_{p}^{n}} \frac{c_{\ell}^{n}(P)}{\Lambda_{\ell}^{0}(P)}\left|\Lambda: \mathbb{Z}_{p}^{n}\right|^{-s}$ Formula for $\mathcal{Z}_{n, \ell}^{\mathrm{C}}(s)$? That's what this project is about! Find the one for $n=3$ and (simulatenously) all ℓ at the bottom of the page. \downarrow

Lead question

How do coefficients of the Ehrhart polynomial for a fixed lattice polytope P vary as one varies the ambient lattice?

Lead ideas

1. Interpret Ehrhart coeffients as labels on vertices of affine buildings 2. Represent Hecke operators as vertex averaging operators on buildings 3. Use Hecke series to enumerate Ehrhart coefficients

Example $-n=2, \ell=1$

Consider the linear terms $c_{1}^{\wedge}\left(P_{i}\right)$ of the Ehrhart polynomials $E_{\boldsymbol{q}_{i}}^{\wedge}(t)=1+c_{1}^{\wedge}\left(P_{i}\right) t+t^{2}$ of two polytopes P_{1} and P_{2} as a function of the overlattices $\Lambda \supseteq \mathbb{Z}_{p}^{2}$ of finite index.

Ehrhart theory 101
$\Lambda_{0}=\mathbb{Z}^{n}$ - standard lattice in \mathbb{R}^{n} P - full-dim. lattice polytope in \mathbb{R}^{n}

Ehrhart polynomial of P relative to $\Lambda_{0}:=\mathbb{Z}^{n}$
$E_{P}^{\wedge}(T):=\sum_{\ell=0}^{n} c_{\ell}^{\wedge}(P) T^{n} \in \mathbb{Q}[T]$
Raison d'être: $E_{P}^{\wedge}(m)=\# m P \cap \mathbb{Z}^{n}$
Fun facts about Ehrhart polynomials:
(A) Constant term $c_{0}^{\wedge}(P)=1$.
(B) Leading term $c_{n}^{\wedge}(P)=\operatorname{vol}(P)$.
(C) $c_{n-1}(P) \approx$ sum of volumes of faces of P. (D) Other coefficients $c_{l}(P) \in \mathbb{Q}$ - mystery???

Symplectic Hecke
 theory (the small print)

- $G_{n}=\operatorname{GSp}_{2 n}\left(\mathbb{Q}_{p}\right)$
- $G_{n}^{+}=\operatorname{CiSp}_{2 n}\left(\mathbb{Q}_{p}\right) \cap \operatorname{Mat}_{2 n}\left(\mathbb{Z}_{p}\right)$
- $\Gamma_{n}=\mathrm{GSp}_{2 n}\left(\mathbb{Z}_{p}\right)$
- $\mathcal{H}_{n}^{\mathrm{C}}=\mathcal{H}^{\mathrm{C}}\left(G_{n}^{+}, \Gamma_{n}\right)$ - spherical Hecke algebra
$\bullet J=\left(\begin{array}{cc}0 & \text { Id } \\ -\operatorname{ld} & 0\end{array}\right) \in \operatorname{Mat}_{2 n}(\mathbb{Z})$
- $D_{n}^{C}\left(p^{\alpha}\right)=\left\{A \in G_{n}^{+} \mid A J A^{t}=p^{\alpha} J\right\}$
- $T_{n}^{C}\left(p^{\alpha}\right)=\sum_{\Gamma_{n} \backslash D_{n}^{c}\left(p^{\alpha}\right) / \Gamma_{n}} \Gamma_{n} g \Gamma_{n} \in \mathcal{H}_{n}^{c}$
- W - type-C Weyl group, aka signed permutations
$\bullet \Omega: \mathcal{H}_{p}^{\mathrm{C}} \xrightarrow{\sim} \mathbb{C}\left[x_{0}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]^{W}$ - Satake isom.

Note: weight functions depend on P_{i}, but sums over the concentric circles around the root (labeled $5 / 2$ and 3), normalized by this label, do not. Surprise?!

Hermite-Smith series

Two sets of invariants of a lattice $\Lambda \leq \mathbb{Z}_{p}^{n}$:
Smith parameters: $\mu(\Lambda)=\left(\mu_{1}, \ldots, \mu_{n}\right) \mid \mathbb{Z}_{p}^{n} / \Lambda \cong \bigoplus_{i=1}^{n} \mathbb{Z} /\left(p^{\mu_{i}}\right)$

Definition (AMV)

The Hermite-Smith series enumerates p-adic lattices simultaneously by Hermite- and Smith-parameters:

$$
\mathrm{HS}_{n}(s):=\sum_{\Lambda \leq \mathbb{Z}_{p}^{n} \text { primitive }} X^{\mu(\Lambda)} Y^{\delta(Y)} \in \mathbb{Q} \llbracket X, Y \rrbracket
$$

Example: $\mathrm{HS}_{2, p}(X, Y)=\frac{1-X_{1}^{2} Y_{1} Y_{2}}{\left(1-X_{1} Y_{1}\right)\left(1-p X_{1} Y_{2}\right)\left(1-X_{2} Y_{1} Y_{2}\right)}$.

Theorem (AMV)

Explicit combinatorial formula for all $n \in \mathbb{N}$ for $\operatorname{HS}_{n, p}\left(X_{1}, \ldots, X_{n}, 1, \ldots, 1, Y_{n}\right)$
as rational function in $p(!)$ and X and Y

$$
0
$$

Symplectic Hecke series, Satake generating functions, and Hermite-Smith series

Consider the symplectic Hecke series

$$
\sum_{\alpha \geq 0} T_{n}^{C}\left(p^{\alpha}\right) X^{\alpha} \in \mathcal{H}_{p}^{C} \llbracket X \rrbracket .
$$

Applying the Satake isomorphism Ω to its coefficients, we obtain
Definition (local Satake generating function):

$$
R_{n}\left(x_{0}, \ldots, x_{n}, X\right):=\left(1-x_{0} X\right)\left(1-x_{0} x_{1} \ldots x_{n} X\right) \sum_{\alpha \geq 0} \Omega\left(T_{n}^{\complement}\left(p^{\alpha}\right)\right) X^{\alpha} \in \mathbb{C}\left[x^{ \pm 1}\right] \llbracket X \rrbracket
$$

> Theorem (Andrianov)

The Hermite-Smith series specializes to the local Satake generating function:

$$
\left.R_{n}\left(x_{0}, x_{1}, \ldots, x_{n}, X\right)=\mathrm{HS}_{n, p}\left(\left(p^{(i+1}\right)_{x_{0}} X\right)_{i=1}^{n},\left(p^{-j} x_{j}\right)_{j=1}^{n}\right)
$$

Theorem (AMV)
$H S_{n, p}\left(\left(p^{\binom{i+1}{2}+\ell-n s}\right)_{i=1}^{n}, 1^{(n-1)}, p^{-\ell}\right)=\mathcal{Z}_{n, \ell}^{C}(s)\left(1-p^{\ell-s}\right)\left(1-p^{\binom{n+1}{2}-s}\right)$

An example in dimension 6 - the Ehrhart-Hecke zeta function of type C_{3}

