Two-Row Set-Valued Tableaux: Catalan^{+k} Combinatorics

Alexander Lazar Université Libre de Bruxelles, Svante Linusson[†] KTH Royal Institute of Technology

Usual Representation

Filling of Ferrers diagram for $\lambda \vdash n$ with k extra elements

$$S = \begin{bmatrix} 1 & 2 & 7 & 8 \\ 3 & 4,5 & 11 & 13 \\ 6,9,10 & 12 & 14,15 & 16 \end{bmatrix}$$

 $\mathrm{SYT}^{+k}(\lambda) = \mathrm{set}$ of set-valued SYT of λ with k extra elts

Set-Valued Descents

 $i \in [n+k]$ is a descent of $S \in \mathrm{SYT}^{+k}(\lambda)$ if:

- $i,i+1 \in \lambda^{(j)}$ and i below i+1, or
- i is an extra element

 $\mathrm{D}^{+k}(S) = \mathrm{set}$ of set-valued descents

$$\operatorname{comaj}^{+k}(S) := \sum_{i \in D^{+k}(S)} (n + k - i)$$

$$D^{+3}(S) = \{6, 12\} \cup \{5, 9, 10, 15\}$$
$$comaj^{+3}(S) = 10 + 4 + 11 + 7 + 6 + 1 = 39$$

Comaj Generating Function

Enumeration is very difficult in general. Special case of rectangular shape with k=1 is known:

Theorem (Hopkins – Lazar – Linusson [2]):

For all positive integers a, b, we have

$$\sum_{S \in \text{SYT}^{+1}(a \times b)} q^{\text{comaj}^{+1}(S)} = \frac{[a]_q [b]_q}{[a+b]_q} [ab+1]_q! \prod_{i=0}^{a-1} \frac{[i]_q!}{[b+i]_q!}.$$

Best known general results when q=1 are determinental formulas of Anderson–Chen–Tarrasca [1].

Alternative Representation

A filtration $\emptyset=\lambda^{(0)}\subseteq\lambda^{(1)}\subseteq\cdots\lambda^{(k)}\subseteq\lambda^{(k+1)}=\lambda$

 1
 2
 6
 7

 3
 4
 8
 10

 5
 9
 11
 12

along with an outer corner for each $\lambda^{(i)}$ and an ordinary SYT of shape λ

Catalan Combinatorics

In two-row case, fixing the total number of elements yields good behavior:

Theorem (Lazar – Linusson):

For fixed i, n with $0 \le i \le n$,

$$\sum_{2b+k-i=n} \left| \text{SYT}^{+k}((b,b-i)) \right| = \binom{2n-2}{n-i-1} - \binom{2n-2}{n-i-2} + \binom{n-2}{n-i}.$$

In particular, when i=0

$$\sum_{2b+k=n} |SYT^{+k}((b,b))| = Cat(n-1).$$

Further refinements to the Narayana and Kreweras numbers also exist.

For example, when n=4, i=0, we have

$$\begin{bmatrix} 1 & 1,2 & 1,2,3 & 12 & 13 \\ 2,3,4 & 3,4 & 4 & 34 & 24 \end{bmatrix}$$

Bijections to Other Catalan Models: 321-Avoiding Permutations and Motzkinlike paths

- [1] Dave Anderson, Linda Chen, and Nicola Tarasca, K-classes of Brill-Noether Loci and a Determinantal Formula, Int. Math. Res. Not. IMRN (2022), no. 16, 12653–12698. MR 4466009
- [2] Sam Hopkins, Alexander Lazar, and Svante Linusson, *On the q-enumeration of barely set-valued tableaux and plane partitions*, European J. Combin. **113** (2023), Paper No. 103760, 29pp. MR 4611147

More Lattice Paths

Theorem (Lazar-Linusson):

Consider the following restrictions on bicolored Motzkin paths from (0,0) to (n,0):

- 1. No u steps on y=0
- 2. No d steps before the first down-step.

We have

- $|\operatorname{Motz}(n)| = \operatorname{Cat}(n+1)$
- $|\text{Motz}_{\{1\}}(n)| = |\text{Motz}_{\{2\}}(n)| = \text{Cat}(n)$
- $|\text{Motz}_{\{1,2\}}(n)| = \text{Cat}(n-1),$

where $\mathrm{Motz}_X(n)$ is the set of bic. Motzkin paths subject to the conditions in $X\subseteq\{1,2\}$.

Expected # Columns?

Conjecture: Fix $n \ge 3$. Sampling uniformly at random from $\bigsqcup_{2 \times b + k = n} \mathrm{SYT}^{+k}((b, b))$,

the expected value of b is:

$$\frac{(n-2)(n+3)}{2(2n-3)}$$

q-Catalan?

$$\widetilde{\operatorname{Cat}}_{n}(q) := \sum_{2b+k=n+1} \left(\sum_{S \in \operatorname{SYT}^{+k}(2 \times b)} q^{\operatorname{comaj}^{+k}(S)} \right)$$

Question:

These are *not* any of the usual q-Catalan numbers. Is there a better formula?