Jack Derangements

Nathan Lindzey

Department of Computer Science
Technion (Israel Institute of Technology), Israel

Abstract

For each $\lambda \vdash n$ we give a simple combinatorial expression for the sum of the Jack character $\theta_{\alpha}^{\lambda}$ over the integer partitions of n with no singleton parts. For $\alpha=1,2$ this gives closed forms for the eigenvalues of the permutation and perfect matching derangement graphs, resolving an open question in algebraic graph theory. A byproduct of the latter is a simple combinatorial formula for the immanants of the matrix $J-I$ where J is the all-ones matrix, which might be of independent interest. Our proofs center around a Jack analogue of a hook product related to Cayley's Ω-process of invariant theory that we call the principal lower hook product.

Jack Characters

For any $\alpha \in \mathbb{R}$, the (integral form) Jack polynomals J_{λ} are defined as the unique family satisfying the following relations:

- Orthogonality: $\left\langle J_{\lambda}, J_{\mu}\right\rangle_{\alpha}=0$ whenever $\lambda \neq \mu$.
- Triangularity: $J_{\lambda}=\sum_{\mu \unlhd \lambda} c_{\lambda \mu} m_{\mu}$
- Normalization: $\left[m_{1^{n}}\right] J_{\lambda}=n!$.

Specializing α recovers classical families of symmetric functions:

- $\alpha=1 \longrightarrow$ (integral form) Schur polynomials S_{λ}.
- $\alpha=2 \longrightarrow$ (integral form) Zonal polynomials Z_{λ}.

The Jack characters $\theta_{\alpha}^{\lambda}$ are the coefficients of the power sum expansion of the J_{λ} 's:

$$
J_{\lambda}=\sum_{\mu \vdash n} \theta_{\alpha}^{\lambda}(\mu) p_{\mu} \quad \text { for all } \lambda \vdash n .
$$

- $\alpha=1 \longrightarrow$ (normalized) irreducible characters of S_{n}. - $\alpha=2 \longrightarrow$ (normalized) zonal spherical functions of $S_{2 n} / B_{n}$.

Jack Derangement Character Sums

For any $\lambda \vdash n$ and $\alpha \in \mathbb{R}$, we define

$$
\eta_{\alpha}^{\lambda}:=\sum_{\substack{\mu \vdash n \\ \mu \text { has no singleton parts }}} \theta_{\alpha}^{\lambda}(\mu) .
$$

to be the λ-Jack derangement sum.

λ-Colored Permutations

For a given integer partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \vdash n$, define
$\cdot\left\{1,2, \ldots, \lambda_{1}\right\}$ to be the set of symbols, and

- for each symbol i, define a color list $L_{i}:=\left\{1,2, \ldots, \lambda_{i}^{\top}\right\}$.

We define a λ-colored permutation (c, σ) to be
\cdot an assignment of colors $c=c_{1}, c_{2}, \ldots, c_{\lambda_{1}}$ such that $c_{i} \in L_{i}$, - and a permutation $\sigma \in \operatorname{Sym}\left(\left\{1,2, \ldots, \lambda_{1}\right\}\right)$ such that

$$
\sigma(i)=j \Rightarrow c_{i}=c_{j},
$$

i.e., each cycle of the permutation is monochromatic.

Ex. $(4,4,2) \vdash 10 . L_{1}=L_{2}=\square \quad$ and $\quad L_{3}=L_{4}=\square$.

Let $h_{\lambda}^{*}(i, j):=a_{\lambda}(i, j) \alpha+l_{\lambda}(i, j)+1$ be the lower hook length.
Ex.

Theorem 1 Let $\lambda \vdash n$ and $\alpha=1$. The number of λ-colored permutations is

$$
h_{\lambda}(1,1) h_{\lambda}(1,2) \cdots h_{\lambda}\left(1, \lambda_{1}\right) .
$$

(A similar result holds for $\alpha=2$ and λ-colored perfect matchings.)

λ-Colored Derangements

A λ-colored derangement is a λ-colored permutation (c, σ) s.t.

$$
\sigma(i)=i \Rightarrow c_{i} \neq 1 .
$$

Ex. $(4,4,2) \vdash 10 . L_{1}=L_{2}=\square \quad$ and $\quad L_{3}=L_{4}=ゅ$.

Jack Derangement Numbers

Let d_{k}^{λ} denote the number of λ-colored derangements with exactly k cycles. For any $\lambda \vdash$ and $\alpha \in \mathbb{R}$, we define

$$
D_{\alpha}^{\lambda}:=\sum_{k=1}^{\lambda_{1}} d_{k}^{\lambda} \alpha^{\lambda_{1}-k}
$$

to be the λ-Jack derangement number.

Theorem 2 (Main Result I) For any $\lambda \vdash n$ and $\alpha \in \mathbb{R}$, we have

$$
\eta_{\alpha}^{\lambda}=(-1)^{n-\lambda_{1}} D_{\alpha}^{\lambda}
$$

Derangement Graphs

Theorem 2 gives new formulas for the eigenvalues of derangement graphs.

- The permutation derangement graph is the Cayley graph Cay $\left(S_{n}, D_{n}\right)$ on S_{n} generated by its derangements D_{n}. Its eigenvalues are $\left\{\eta_{1}^{\lambda}: \lambda \vdash n\right\}$.
- The perfect matching derangement graph is the graph over the perfect matchings of the complete graph $K_{2 n}$ defined such that two perfect matchings are adjacent if they share no edges. Its eigenvalues are $\left\{\eta_{2}^{\lambda}: \lambda \vdash n\right\}$.

Using the umbral calculus, we obtain closed forms for their eigenvalues.

- Define $p_{m, j}:=\operatorname{Pr}_{\sigma \in S_{m}}[\sigma$ has j fixed points $]$.
- We define $H_{i}^{+}(\lambda)$ to be the extended ith principal hook product.

Ex. $\lambda=(10,6,3,1) \vdash 20, H_{3}^{+}(\lambda)=80640=2 \cdot 8!$.

13	11	10	8	7	6	4	3	2	1
8	6	5	3	2	1	1	2	3	4
$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
1	1	2	4	5	6	8	9	10	11

Theorem 3 (Main Result II) Let $\lambda=\left(a_{1}, \ldots, a_{d} \mid b_{1}, \ldots, b_{d}\right) \vdash n$. Then

$$
\eta_{1}^{\lambda}=(-1)^{n} \sum_{i \leq \lambda_{i}+1}(-1)^{\lambda_{i}} p_{\lambda_{1}, a_{1}-a_{i}} H_{i}^{+}(\lambda) .
$$

(A similar result holds for $\alpha=2$.)
Immanants
Let f^{λ} denote the number of standard Young tableaux of shape λ.
Theorem 4 Let $\lambda \vdash n$. Then $\operatorname{Imm}_{\lambda}(J-I)=f^{\lambda} D_{1}^{\lambda}$.

