Abstract

For each $\lambda \vdash n$ we give a simple combinatorial expression for the sum of the Jack character $\theta_{\alpha}^{\lambda}$ over the integer partitions of n with no singleton parts. For $\alpha = 1, 2$ this gives closed forms for the eigenvalues of the permutation and perfect matching derangement graphs, resolving an open question in algebraic graph theory. A byproduct of the latter is a simple combinatorial formula for the immanants of the matrix J - I where J is the all-ones matrix, which might be of independent interest. Our proofs center around a Jack analogue of a hook product related to Cayley's Ω -process of invariant theory that we call *the principal lower hook product*.

Jack Characters

For any $\alpha \in \mathbb{R}$, the *(integral form) Jack polynomals J_{\lambda}* are defined as the unique family satisfying the following relations:

- Orthogonality: $\langle J_{\lambda}, J_{\mu} \rangle_{\alpha} = 0$ whenever $\lambda \neq \mu$.
- Triangularity: $J_{\lambda} = \sum_{\mu \lhd \lambda} c_{\lambda \mu} m_{\mu}$
- Normalization: $[m_{1^n}]J_{\lambda} = n!$.

Specializing α recovers classical families of symmetric functions:

- $\alpha = 1 \longrightarrow$ (integral form) Schur polynomials S_{λ} .
- $\alpha = 2 \longrightarrow$ (integral form) Zonal polynomials Z_{λ} .

The Jack characters $\theta_{\alpha}^{\lambda}$ are the coefficients of the power sum expansion of the J_{λ} 's:

$$J_{\lambda} = \sum_{\mu \vdash n} \theta_{\alpha}^{\lambda}(\mu) p_{\mu} \quad \text{ for all } \lambda \vdash n.$$

 \longrightarrow (normalized) irreducible characters of S_n . $\bullet \alpha = 1$

• $\alpha = 2 \longrightarrow$ (normalized) zonal spherical functions of S_{2n}/B_n .

Jack Derangement Character Sums

For any $\lambda \vdash n$ and $\alpha \in \mathbb{R}$, we define

$$\eta_{\alpha}^{\lambda} := \sum_{\substack{\mu \vdash n \\ \mu \text{ has no singleton parts}}} \theta_{\alpha}^{\lambda}(\mu).$$

to be the λ -Jack derangement sum.

Jack Derangements

Nathan Lindzey

Department of Computer Science Technion (Israel Institute of Technology), Israel

λ -Colored Permutations

For a given integer partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell) \vdash n$, define

- $\{1, 2, \ldots, \lambda_1\}$ to be the set of *symbols*, and
- for each symbol *i*, define a color list $L_i := \{1, 2, \dots, \lambda_i^{\top}\}$.

We define a λ -colored permutation (c, σ) to be

- an assignment of colors $c = c_1, c_2, \ldots, c_{\lambda_1}$ such that $c_i \in L_i$,
- and a permutation $\sigma \in \text{Sym}(\{1, 2, \dots, \lambda_1\})$ such that

$$\sigma(i) = j \Rightarrow c_i = c_j,$$

i.e., each cycle of the permutation is *monochromatic*.

 $\mathbf{Ex}_{\bullet}(4,4,2) \vdash 10. \ L_1 = L_2 = \square \quad \text{and} \quad L_3 = L_4 = \square .$ (1)(2)(3)(4)(1, 2, 4)(3) $1 \quad 3 \quad 4$ 3

Let $h_{\lambda}^{*}(i, j) := a_{\lambda}(i, j)\alpha + l_{\lambda}(i, j) + 1$ be the *lower hook length*. Ex.

Theorem 1 Let $\lambda \vdash n$ and $\alpha = 1$. The number of λ -colored permutations is

 $h_{\lambda}(1,1)h_{\lambda}(1,2)\cdots h_{\lambda}(1,\lambda_1).$

(A similar result holds for $\alpha = 2$ and λ -colored perfect matchings.)

λ -Colored Derangements

A λ -colored derangement is a λ -colored permutation (c, σ) s.t.

$$\sigma(i) = i \Rightarrow c_i \neq 1.$$

<u>Ex.</u> $(4, 4, 2) \vdash 10$. $L_1 = L_2 = \square$ and $L_3 = L_4 = \square$. (1)(2)(3)(4)(1, 2, 4)(3) $1 \quad 3 \quad 4$ 3

(1,2)(3,4)

Jack Derangement Numbers

Let d_k^{λ} denote the number of λ -colored derangements with exactly k cycles. For any $\lambda \vdash$ and $\alpha \in \mathbb{R}$, we define

$$D_{\alpha}^{\lambda} := \sum_{k=1}^{\lambda_{1}} d_{k}^{\lambda} \alpha^{\lambda_{1}-k}$$

In the number.
For any $\lambda \vdash n$ and $\alpha \in \mathbb{R}$, we have
 $m^{\lambda} = (-1)^{n-\lambda_{1}} D^{\lambda_{1}}$

to be the λ -Jack derangement

Theorem 2 (Main Result I)

 $\eta_{\alpha}^{\gamma} = (-1)^{n-\gamma_1} D_{\alpha}^{\gamma}$

Derangement Graphs

Theorem 2 gives new formulas for the eigenvalues of *derangement graphs*.

Using the umbral calculus, we obtain closed forms for their eigenvalues.

- Define $p_{m,j} := \Pr_{\sigma \in S_m}[\sigma \text{ has } j \text{ fixed points}].$
- We define $H_i^+(\lambda)$ to be the extended ith principal hook product.

<u>**Ex.**</u> $\lambda = (10, 6, 3, 1) \vdash 20, H_3^+(\lambda) = 80640 = 2 \cdot 8!.$

	13	11	10	8	7	6	4	3	2	1									
	8	6	5	3	2	1	1	2	3	4									
	4	2	1	1	2	3	5	6	7	8									
	1	1	2	4	5	6	8	9	10	11									
51	ılt	II))]	Let	λ	_	$(a_1$		• • •	a_d	8	$b_1,$	• • •	, b	$d) \mid$	— 1	п.	Th	en
			_				< -	- /	,		I	- /			,				
	(—	$1)^{r_{i}}$	n 🖌		(-	-1)	$)^{\lambda_{i}}$	$\mathcal{O}_{oldsymbol{\lambda}_1}$	$, a_1 -$	$a_i I$	H_i^+	$^{+}()$	\) .						
			_																

Theorem 3 (Main Res

$$\eta_1^{\lambda} = (-1)^n \sum_{i \le \lambda_i + 1}$$

(A similar result holds for $\alpha = 2$.)

Immanants

Let f^{λ} denote the number of standard Young tableaux of shape λ .

Theorem 4 Let $\lambda \vdash n$. Then $\operatorname{Imm}_{\lambda}(J - I) = f^{\lambda}D_{1}^{\lambda}$.

• The *permutation derangement graph* is the Cayley graph $Cay(S_n, D_n)$ on S_n generated by its derangements D_n . Its eigenvalues are $\{\eta_1^{\lambda} : \lambda \vdash n\}$. • The *perfect matching derangement graph* is the graph over the perfect matchings of the complete graph K_{2n} defined such that two perfect matchings are adjacent if they share no edges. Its eigenvalues are $\{\eta_2^{\lambda} : \lambda \vdash n\}$.