Shuffle Theorems and Sandpiles

Michele D'Adderio Univesitita di piss, Mark Dukes Univesity College Dublim, Alessandro Iraci Univessita di Pisa, Alexander Lazar ${ }^{\dagger}$ Univesitite Libre de Enruelles, Yvan Le Borgne LabRl, Anna Vanden Wyngaerd Univesite Libre de Enuelles

The Shuffle Theorem
The shuffle theorem of Carlsson and Mellit gives a combinatorial
expression for coeffs of the symmetric function ∇e_{n} in terms of a
q, t-weighted count of labeled lattice paths:

Theorem (Carlsson-Mellit [1] + Loehr-Remmel [2])

 For all μ, ν compositions with $|\mu|+|\nu|=n$,$$
\left\langle\nabla e_{n}, e_{\mu} h_{\nu}\right\rangle=\sum_{D \in \operatorname{PF}(\mu, \nu)} q^{\operatorname{area}(D)} t^{\mathrm{pmj}(D)},
$$

where $\operatorname{PF}(\mu ; \nu)$ is a certain class of parking functions (viewed as lattice paths).
area $(D)=\#$ whole squares between D and main diagonal. $\operatorname{pmaj}(D)$ is significantly more complicated.

Graphs

For all μ, ν with $|\mu|+|\nu|=n, G_{\mu, \nu}$ is a graph on vertex set $[n]$ with:

- A clique $K_{\mu_{i}}$ for each component $\mu_{1}, \ldots, \mu_{\ell(\mu)}$ of μ
- An independent set $\bar{K}_{\nu_{i}}$ for each component $\nu_{1}, \ldots, \nu_{\ell(\nu)}$ of ν - All possible edges between these blocks

We fix a particular labeling of the vertices

- The vertices of μ_{i} are $n-\left(\mu_{1}+\cdots+\mu_{i-1}\right)$ through $n-\left(\mu_{1}+\cdots+\mu_{i}\right)+1$.
- The vertices of ν_{i} are $n-|\mu|-\left(\nu_{1}+\cdots+\nu_{i-1}\right)$ through $n-|\mu|-\left(\nu_{1}+\cdots+\nu_{i}\right)+1$.
Attach a sink vertex 0 to each vertex of $G_{\mu, \nu}$ to get $\hat{G}_{\mu, \nu}$ Running example: $\hat{G}_{(4,3)(2,3)}$

Sandpiles

Sandpile configuration κ on G : assign a nonneg. number of "grains of sand" to each nonsink vertex of G (sink has unlimited sand).

If $\kappa(v) \geq \operatorname{deg}(v), v$ can topple and give one grain to each of its neighbors. $\phi_{v}(\kappa)=$ resulting config. If v can't topple, κ is stable at v Stable config κ is recurrent if, starting from $\phi_{\text {sink }}(\kappa)$, nonsink verts can be ordered so that if we topple in this order the config always stays nonnegative.

Sorted Recurrent Configurations

Sandpiles on $\hat{G}_{\mu, \nu}$ admit an action of the Young subgroup $\mathfrak{S}_{\mu} \times \mathfrak{S}_{\nu}$,
Going mod this action \Longleftrightarrow sorting the values of κ on each block of vertices corresponding to entries of μ, ν.
Recurrent config κ is sorted recurrent if:

- κ is weakly decreasing inside each clique $K_{\mu_{i}}$
- κ is weakly increasing inside each independent block $\bar{K}_{\nu_{i}}$

New Statistic: delay

delay (κ) is computed via the following algorithm:
Topple 0
. As long as some vertex hasn't been toppled, traverse the vertices of G in decreasing order. When you arrive at an un-toppled vertex v

- if v can topple, topple it and continue.
- If v cannot be toppled, increment the delay by 1 and continue.

Computing delay

The configuration in our example has toppling word
$10,9,7,6,5,3,2,11,8,4,1,12$, and hence a delay of 6 . Following our algorithm step-by-step gives the following:

0 . Fire 0

1. In Round 1, we skip 12, 11, 8, 4, and 1
2. In Round 2 , we skip 12 again, but $11,8,4$, and 1 topple.
3. In Round 3, 12 topples.

Figure 1. State of the configuration after Round 1. Nodes filled in gray have been toppled and are ignored in subsequent rounds.

Main Result

The bistatistic (level, delay) allows us to compute coeffs of ∇e_{n} in terms of graphs.

Theorem (DADILLBVW):

For all n and μ, ν compositions with $|\mu|+|\nu|=n$, we have

$$
\left\langle\nabla e_{n}, e_{\mu} h_{\nu}\right\rangle=\sum_{\kappa \in \operatorname{sortrec}(\mu ; \nu)} q^{\operatorname{level}(\kappa)} t^{\operatorname{delay}(\kappa)},
$$

where sortrec $(\mu ; \nu)$ is the set of sorted recurrent configs on $\hat{G}_{\mu, \nu}$.
[1] Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661-697. MR 3787405
[2] Nicholas A. Loehr and Jeffrey B. Remmel, Conjectured combinatorial models for the Hilbert series of generalized diagonal harmonics modules, Electron. J. Combin. 11 (2004), no. 1, Research Paper 68, 64. MR 2097334

