Asymptotics of bivariate algebraico-logarithmic generating functions

Torin Greenwood and Tristan Larson

North Dakota State University

Automating counting

A goal in analytic combinatorics is to find asymptotics for arrays of numbers.

Big Question: Given a combinatorial description of an array, can we automate finding its asymptotics?

Example:

Example: Necklaces

The necklace process, described in [3], constructs necklaces with black and white beads where no two white beads are adjacent. We consider the GF

$$N(\mathbf{x}, \mathbf{y}) = \sum_{k \ge 1} \frac{\varphi(k)}{k} \log \left(\frac{1 - x^k}{1 - x^k - y^k x^{2k}} \right)$$

in which the coefficient $[x^r y^s]N(x, y)$ counts the number of necklaces with r total beads and s white beads. To determine growth of coefficients in the direction $(\ell, 1)$, with $\ell > 2$:

Symbolic method: Circular arrangements of the sets $\{1, ..., n\}$ and $\{\overline{1}, ..., \overline{m}\}$ are cycles of sequences of colored numbers, so the symbolic method enodes in a GF:

$$C(x,y) = log\left(rac{1}{1-(x+y)}
ight).$$

Asymptotics: Once we have the GF, our result yields as $r \to \infty$

$$[x^{r}y^{\ell r}]C(x,y) \sim rac{r^{-3/2}\ell^{-r\ell}(1+\ell)^{(1+\ell)r}}{\sqrt{2\pi\ell(1+\ell)}}.$$

- 1. **Identify smooth critical points** (SCPs) by solving the systems $[H_k = 0, x \frac{\partial}{\partial x} H_k \ell y \frac{\partial}{\partial y} H_k]$, where here $H_k = 1 x^k y^k x^{2k}$.
- 2. Rule out other types of critical points (via the implicit function theorem) by showing $[H_k = 0, \frac{\partial}{\partial x}H_k = 0, \frac{\partial}{\partial y}H_k = 0]$ has no solutions.
- 3. **Determine minimal SCPs** meaning no singularities have coordinate-wise smaller moduli than these critical points. This can be the most computationally intensive part but is simpler if the GF is combinatorial (non-negative coefficients).
- 4. Apply the asymptotic result.

This process yields

$$[x^{\ell n}y^{n}]N(x,y) \sim \frac{n^{-3/2}\ell^{5/2}}{\sqrt{2\pi}} \frac{(\ell-1)^{(2\ell n-2n+3)/2}}{(\ell-2)^{(2\ell n-4n+9)/2}}$$

Example: Log of Narayana Numbers

Here, an algebraic singularity determines asymptotics for a non-algebraic GF. The Narayana numbers count Dyck paths with *n* steps and *k* peaks, encoded by

Hierarchy of GFs

- Algebraic GFs encode outputs of context-free grammars. Examples include Dyck paths, binary trees, constrained (random) walks, and RNA secondary structures.
- D-finite GFs satisfy a linear differential equation and encode sequences which satisfy a polynomial recurrence. Examples include cycles of objects.

Within the class of D-finite GFs are GFs that involve a logarithmic factor. Cases where logarithms may appear include Póyla enumeration, objects involving cycles, or implicitly as components of larger structures.

Background

- Flajolet and Sedgewick's book, [1]: univariate generating functions.
- Pemantle, Wilson, and Melczer's book, [4]: multivariate rational generating functions $F(\mathbf{x}) = \sum_{n_1,...,n_d} a_{i_1,...,i_d} x_1^{n_1} \cdots x_d^{n_d}$. Here, $\mathbf{x} = (x_1, \dots, x_d)$.
- Analytic combinatorics mantra:
- Location of a GF's singularities determines exponential growth of its coefficients.
- Behavior of the GF near its singularities determines subexponential growth.
- The Cauchy integral formula is central to these derivations:

$$\left[x_1^{n_1}\cdots x_d^{n_d}\right]F(\mathbf{x}) = \left(\frac{1}{2\pi i}\right)^d \int_T \frac{F(\mathbf{x})}{x_1^{n_1+1}\cdots x_d^{n_d+1}} dx_1\cdots dx_d$$

 $N(z,t) = rac{1+z-tz-\sqrt{(1+z-tz)^2-4z}}{2z}.$

We consider the growth rate of coefficients $[z^n t^s] \log^r N(z,t)$ in the direction $(\ell, 1)$ for $\ell > 1$. The dominant asymptotics are determined by the algebraic singularity of N(z,t) at the point $(p,q) := ([1-1/\ell]^2, 1/[\ell-1]^2)$, and we find no nonsmooth critical points. We then expand $\log^r N(z,t)$ at (p,q) so that Corollary 2 of [2] can be applied. This yields our final result:

$$z^{\ell n} t^{n}] \log^{r} N(z,t) \sim \frac{r}{2\pi} \log^{r-1} \left(\frac{\ell}{\ell-1} \right) \cdot n^{-2} \cdot (\ell-1)^{-2n(\ell-1)-1} \ell^{2\ell n-1}.$$

Proof Outline

Step 1: Change of variables
Step 2: Choose a convenient contour
Step 3: Approximate the integrand with a product integral
Step 4: Evaluate the product integral

Compared to previous results, adding logarithms required tightening technical error bounds and deriving several new approximations of logarithmic factors.
 When β ≠ 0, we obtain an asymptotic series.

Result

Let H(x, y) be an analytic function near the origin whose power series expansion at (0,0) has non-negative coefficients. Define $\mathcal{V} = \{(x,y) : H(x,y) = 0\}$. Assume that there is a single smooth strictly minimal critical point of \mathcal{V} at (p,q) within the domain of analyticity of H where p and q are real and positive. Let $\lambda = \frac{r+O(1)}{s}$ as $r, s \to \infty$ with r and s integers.

Assume that $H_X(p,q)$ is nonzero. Fix $\alpha \in \mathbb{R}$ where $\alpha \notin \mathbb{Z}_{\leq 0}$ and $\beta \in \mathbb{Z}_{\geq 0}$. Then, for certain constants $M \neq 0$ and \mathcal{E}_j , the following expression holds as $r, s \to \infty$:

 $[x^{r}y^{s}]H(x,y)^{-\alpha}\log^{\beta}(H(x,y)) \sim (-1)^{\beta}\frac{(-pH_{x}(p,q))^{-\alpha}r^{\alpha-1}}{\Gamma(\alpha)\sqrt{-2\pi q^{2}Mr}}p^{-r}q^{-s}\log^{\beta}r\left[1+\sum_{j\geq 1}\frac{\mathcal{E}_{j}}{\log^{j}r}\right],$

[1] Phillipe Flajolet and Robert Sedgewick. *Analytic combinatorics*. Cambridge University Press, 2009.

- [2] Torin Greenwood. Asymptotics of bivariate analytic functions with algebraic singularities. *Journal of Combinatorial Theory, Series A*, 153:1–30, 2018.
- [3] Benjamin Hackl and Helmut Prodinger. The necklace process: a generating function approach. *Statist. Probab. Lett.*, 142:57–61, 2018.
- [4] Robin Pemantle, Mark C. Wilson, and Stephen Melczer. Analytic Combinatorics in Several Variables. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition, 2024.

torin.greenwood@ndsu.edu tristan.larson@ndsu.edu

