Asymptotics of bivariate algebraico-logarithmic generating functions

Torin Greenwood and Tristan Larson
North Dakota State University

Automating counting

A goal in analytic combinatorics is to find asymptotics for arrays of numbers.

Big Question: Given a combinatorial description of an array, can we automate finding its asymptotics?

Example:

Symbolic method: Circular arrangements of the sets $\{1, \ldots, n\}$ and $\{\overline{1}, \ldots, \bar{m}\}$ are cycles of sequences of colored numbers, so the symbolic method enodes in a GF:

$$
C(x, y)=\log \left(\frac{1}{1-(x+y)}\right) .
$$

Asymptotics: Once we have the GF, our result yields as $r \rightarrow \infty$

$$
\left[x^{r} y^{\ell r}\right] C(x, y) \sim \frac{r^{-3 / 2} \ell^{-r \ell}(1+\ell)(1+\ell) r}{\sqrt{2 \pi \ell(1+\ell)}} .
$$

Hierarchy of GFs

- Rational GFs encode the output of deterministic finite automata.
- Algebraic GFs encode outputs of context-free grammars. Examples include Dyck paths, binary trees, constrained (random) walks, and RNA secondary structures.
- D-finite GFs satisfy a linear differential equation and encode sequences which satisfy a polynomial recurrence. Examples include cycles of objects.

Within the class of D-finite GFs are GFs that involve a logarithmic factor. Cases where logarithms may appear include Póyla enumeration, objects involving cycles, or implicitly as components of larger structures.

Background

- Flajolet and Sedgewick's book, [1]: univariate generating functions.
- Pemantle, Wilson, and Melczer's book, [4]: multivariate rational generating functions $F(\mathbf{x})=\sum_{n_{1}, \ldots, n_{d}} a_{i_{1}, \ldots, i_{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}$. Here, $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$.
Analytic combinatorics mantra:
- Location of a GF's singularities determines exponential growth of its coefficients
- Behavior of the GF near its singularities determines subexponential growth.
- The Cauchy integral formula is central to these derivations:

$$
\left[x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}\right] F(\mathbf{x})=\left(\frac{1}{2 \pi i}\right)^{d} \int_{T} \frac{F(\mathbf{x})}{x_{1}^{n_{1}+1} \cdots x_{d}^{n_{d}+1}} d x_{1} \cdots d x_{d}
$$

Result

Let $H(x, y)$ be an analytic function near the origin whose power series expansion at $(0,0)$ has non-negative coefficients. Define $\mathcal{V}=\{(x, y): H(x, y)=0\}$. Assume that there is a single smooth strictly minimal critical point of \mathcal{V} at (p, q) within the domain of analyticity of H where p and q are real and positive. Let $\lambda=\frac{r+O(1)}{s}$ as $r, s \rightarrow \infty$ with r and s integers.

Assume that $H_{X}(p, q)$ is nonzero. Fix $\alpha \in \mathbb{R}$ where $\alpha \notin \mathbb{Z}_{<0}$ and $\beta \in \mathbb{Z}_{>0}$. Then, for certain constants $M \neq 0$ and \mathcal{E}_{j}, the following expression holds as $r, s \rightarrow \infty$:

$$
\left[x^{r} y^{s}\right] H(x, y)^{-\alpha} \log ^{\beta}(H(x, y)) \sim(-1)^{\beta} \frac{\left(-p H_{x}(p, q)\right)^{-\alpha} r^{\alpha-1}}{\Gamma(\alpha) \sqrt{-2 \pi q^{2} M r}} p^{-r} q^{-s} \log ^{\beta} r\left[1+\sum_{j \geq 1} \frac{\mathcal{E}_{j}}{\log ^{j} r}\right],
$$

Example: Necklaces

The necklace process, described in [3], constructs necklaces with black and white beads where no two white beads are adjacent. We consider the GF

$$
N(x, y)=\sum_{k \geq 1} \frac{\varphi(k)}{k} \log \left(\frac{1-x^{k}}{1-x^{k}-y^{k} x^{2 k}}\right)
$$

in which the coefficient $\left[x^{r} y^{s}\right] N(x, y)$ counts the number of necklaces with r total beads and s white beads. To determine growth of coefficients in the direction $(\ell, 1)$, with $\ell>2$:

1. Identify smooth critical points (SCPs) by solving the systems
$\left[H_{k}=0, x \frac{\partial}{\partial x} H_{k}-\ell y \frac{\partial}{\partial y} H_{k}\right]$, where here $H_{k}=1-x^{k}-y^{k} x^{2 k}$
2. Rule out other types of critical points (via the implicit function theorem) by showing $\left[H_{k}=0, \frac{\partial}{\partial x} H_{k}=0, \frac{\partial}{\partial y} H_{k}=0\right]$ has no solutions.
3. Determine minimal SCPs meaning no singularities have coordinate-wise smaller moduli than these critical points. This can be the most computationally intensive part but is simpler if the GF is combinatorial (non-negative coefficients).
4. Apply the asymptotic result.

This process yields

$$
\left[x^{\ell n} y^{n}\right] N(x, y) \sim \frac{n^{-3 / 2} \ell^{5 / 2}}{\sqrt{2 \pi}} \frac{(\ell-1)^{(2 \ell n-2 n+3) / 2}}{(\ell-2)^{(2 \ell n-4 n+9) / 2}} .
$$

Example: Log of Narayana Numbers

Contributes to the term $z^{7} t^{4}$

Here, an algebraic singularity determines asymptotics for a non-algebraic GF. The Narayana numbers count Dyck paths with n steps and k peaks, encoded by

$$
N(z, t)=\frac{1+z-t z-\sqrt{(1+z-t z)^{2}-4 z}}{2 z} .
$$

We consider the growth rate of coefficients $\left[z^{n} t^{s}\right] \log ^{r} N(z, t)$ in the direction ($\ell, 1$) for $\ell>1$. The dominant asymptotics are determined by the algebraic singularity of $N(z, t)$ at the point $(p, q):=\left([1-1 / \ell]^{2}, 1 /[\ell-1]^{2}\right)$, and we find no nonsmooth critical points. We then expand $\log ^{r} N(z, t)$ at (p, q) so that Corollary 2 of [2] can be applied. This yields our final result:

$$
\left[z^{\ell n} t^{n}\right] \log ^{r} N(z, t) \sim \frac{r}{2 \pi} \log ^{r-1}\left(\frac{\ell}{\ell-1}\right) \cdot n^{-2} \cdot(\ell-1)^{-2 n(\ell-1)-1} \ell^{2 \ell n-1} .
$$

Proof Outline

Step 1: Change of variables
Step 2: Choose a convenient contour
Step 3: Approximate the integrand with a product integral
Step 4: Evaluate the product integral

- Compared to previous results, adding logarithms required tightening technical error bounds and deriving several new approximations of logarithmic factors. - When $\beta \neq 0$, we obtain an asymptotic series.

arXiv + References

Find our work on arXiv:
https://arxiv.org/abs/2405.08133

[1] Phillipe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, 2009 [2] Torin Greenwood. Asymptotics of bivariate analytic functions with algebraic singularities. Journal of Combinatorial Theory, Series A, 153:1-30, 2018.
[3] Benjamin Hackl and Helmut Prodinger. The necklace process: a generating function approach. Statist. Probab. Lett., 142:57-61, 2018.
[4] Robin Pemantle, Mark C. Wilson, and Stephen Melczer. Analytic Combinatorics in Several Variables. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition, 2024.

