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Automating counting

A goal in analytic combinatorics is to find asymptotics for arrays of numbers.

Symbolic Complex
method analysis

Combinatorial Generating

description function Asymptotics

Big Question: Given a combinatorial description of an array, can we automate find-
Ing its asymptotics?
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b
N
@x
@

Symbolic method: Circular arrangements of the sets {1,...,n} and {1,...,m} are
cycles of sequences of colored numbers, so the symbolic method enodes in a GF:

Asymptotics: Once we have the GF, our result yields as r — o
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Hierarchy of GFs
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= Rational GFs encode the output of deterministic finite automata.

= Algebraic GFs encode outputs of context-free grammars. Examples include Dyck
paths, binary trees, constrained (random) walks, and RNA secondary structures.

= D-finite GFs satisfy a linear differential equation and encode sequences which
satisfy a polynomial recurrence. Examples include cycles of objects.

Within the class of D-finite GFs are GFs that involve a logarithmic factor. Cases
where logarithms may appear include Poyla enumeration, objects involving cycles,
or implicitly as components of larger structures.

Background

= Flajolet and Sedgewick’s book, [1]: univariate generating functions.

= Pemantle, Wilson, and Melczer’s book, [4]: multivariate rational generating

functions F(Xx) = an,...,nd aj, de’]’-’l : .XZd_ Here, x = (x1,...,Xy).

= Analytic combinatorics mantra:

= Location of a GF's singularities determines exponential growth of its coefficients.
= Behavior of the GF near its singularities determines subexponential growth.

= The Cauchy integral formula is central to these derivations:
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Result

Let H(x,y) be an analytic function near the origin whose power series expansion
at (0,0) has non-negative coefficients. Define V = {(x,y) : H(x,y) = 0}. Assume
that there is a single smooth strictly minimal critical point of V at (p,q) within the
domain of analyticity of H where p and g are real and positive. Let )\ = @ as

r,s — oo with r and s integers.

Assume that Hx(p,q) is nonzero. Fix a € R where a ¢ Z_g and g € Z-q. Then, for
certain constants M £ 0 and & the following expression holds as r,s — oc:
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Example: Necklaces
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The necklace process, described in [3], constructs necklaces with black and white
beads where no two white beads are adjacent. We consider the GF
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in which the coefficient [x"y>]N(x, y) counts the number of necklaces with r total beads
and s white beads. To determine growth of coefficients in the direction (¢, 1), with ¢ > 2:

1. Identify smooth critical points (SCPs) by solving the systems
Hi = 0,x35Hi — ty#5Hy], where here Hy = 1 — xK — yKx2K,

2. Rule out other types of crltlcal points (via the implicit function theorem) by
showing [H, =0, aka 0, aka = 0] has no solutions.

3. Determine minimal SCPs meaning no singularities have coordinate-wise
smaller moduli than these critical points. This can be the most computationally
intensive part but is simpler if the GF is combinatorial (non-negative coefficients).

4. Apply the asymptotic resulit.

This process yields
n—3/2¢5/2 (¢ — 1)(2in-2n+3)/2
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Example: Log of Narayana Numbers
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Contributes to the term 2’

Here, an algebraic singularity determines asymptotics for a non-algebraic GF. The
Narayana numbers count Dyck paths with n steps and k peaks, encoded by

l+z—-tz— \/(1 +z-t2)2 -4z
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We consider the growth rate of coefficients [z/'t>]1og" N(z,t) in the direction (¢,1) for
¢ > 1. The dominant asymptotics are determined by the algebraic singularity of N(z, t)
at the point (p,q) := ([1-1/¢2,1/[¢—1]2), and we find no nonsmooth critical points. We

then expand log" N(z, t) at (p,q) so that Corollary 2 of [2] can be applied. This yields
our final result:
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Proof Outline

Im(u)

Step 1: Change of variables

Step 2: Choose a convenient contour

Step 3: Approximate the integrand
with a product integral

Step 4: Evaluate the product integral

Re(u)

= Compared to previous results, adding logarithms required tightening technical
error bounds and deriving several new approximations of logarithmic factors.

= When g8 # 0, we obtain an asymptotic series.
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