

Slit-slide-sew bijections for constellations and quasiconstellations

Jérémie Bettinelli & Dimitri Korkotashvili

Constellations

<u>p-hypermap</u> (for $p \ge 2$): plane map with dark faces (a.k.a hyperedges) and light faces (a.k.a hyperfaces) such that:

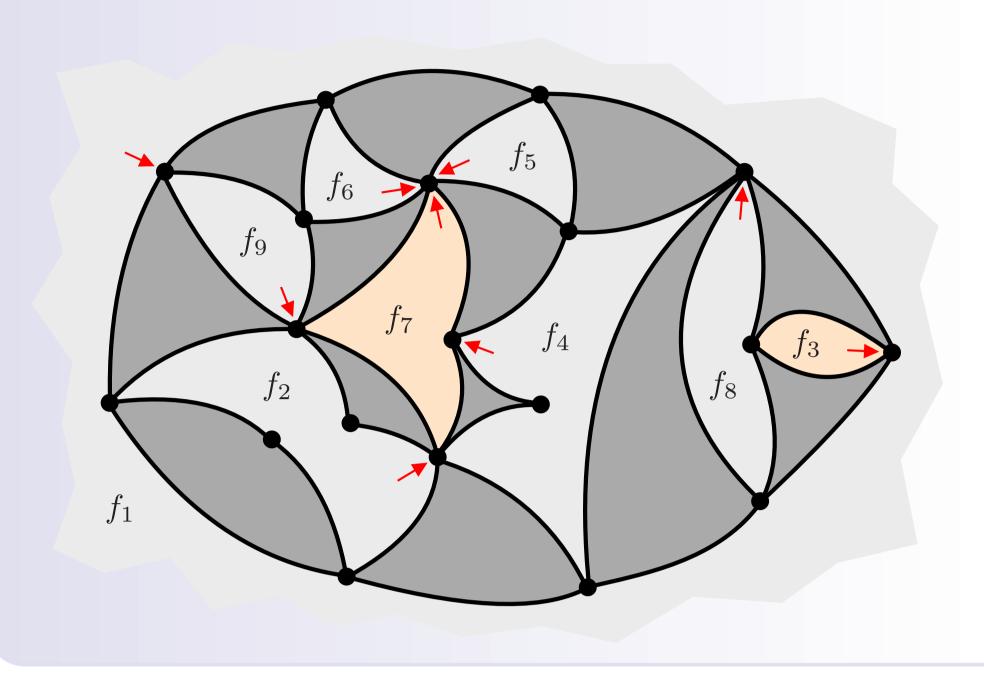
- adjacent faces have different shades;
- dark faces have degree *p*.

<u>p-hypermap of type $a = (a_1, \ldots, a_r)$ </u>: light faces f_1, \ldots, f_r of respective degrees a_1, \ldots, a_r .

Flawed face: light face whose degree $\notin p\mathbb{Z}$.

*p***-constellation**: no flawed faces.

Quasi-*p***-constellation**: exactly two flawed faces.



Bijective interpretation

$$a = (a_1, \dots, a_r) \equiv (k, -k, 0, \dots, 0) \mod p$$
, with $a_1 \ge 2$
 $\tilde{a} = (\tilde{a}_1, \dots, \tilde{a}_r) := (a_1 - 1, a_2 + 1, a_3, \dots, a_r)$

Enumeration

For $\mathbf{a} = (a_1, \dots, a_r) \in \mathbb{N}^r$, define the following:

- C(a): number of *p-hypermaps of type a*.
- $E(\mathbf{a}) := \sum_{i=1}^{r} a_i$: number of *edges*.
- $D(a) := \frac{E(a)}{p}$: number of dark faces.
- $V(\mathbf{a}) := E(\mathbf{a}) D(\mathbf{a}) r + 2$: number of vertices.

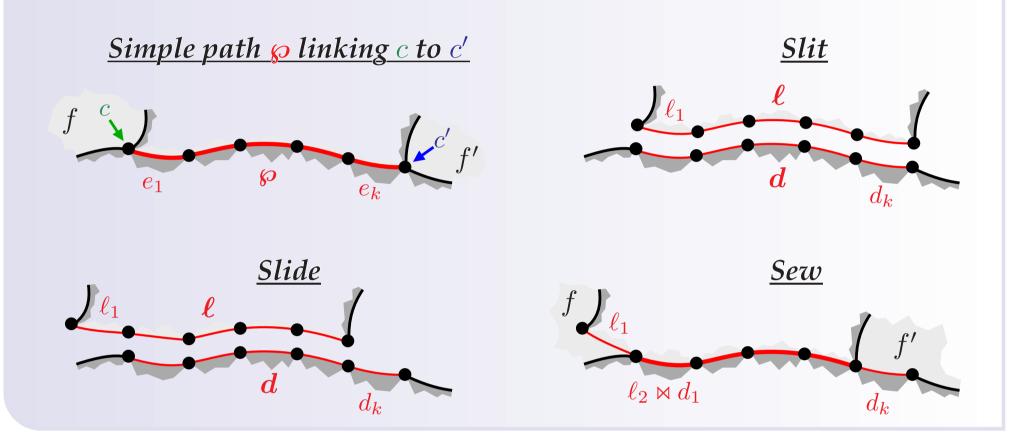
Thm ([Bousquet-Mélou-Schaeffer '00, Collet-Fusy '14]). For p-constellations or quasi-p-constellations

$$C(\boldsymbol{a}) = c_{\boldsymbol{a}} \cdot \frac{(E(\boldsymbol{a}) - D(\boldsymbol{a}) - 1)!}{V(\boldsymbol{a})!} \prod_{i=1}^{r} \alpha(a_i),$$

$$\text{where} \quad \alpha(x) := \frac{x!}{\lfloor x/p \rfloor! \left(x - \lfloor x/p \rfloor - 1\right)!},$$

and c_a equals 1 for p-constellations, or p-1 for quasi-pconstellations.

Methodology: slit slide sew

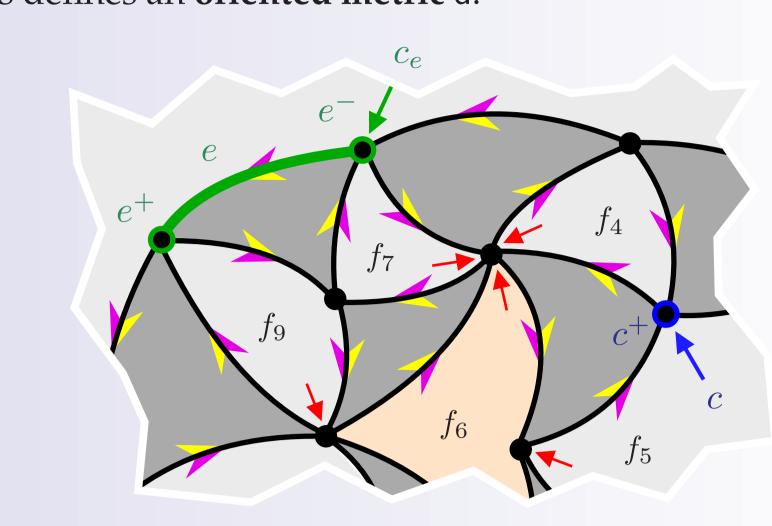


Orientation

Edge orientation. Two possibilities:

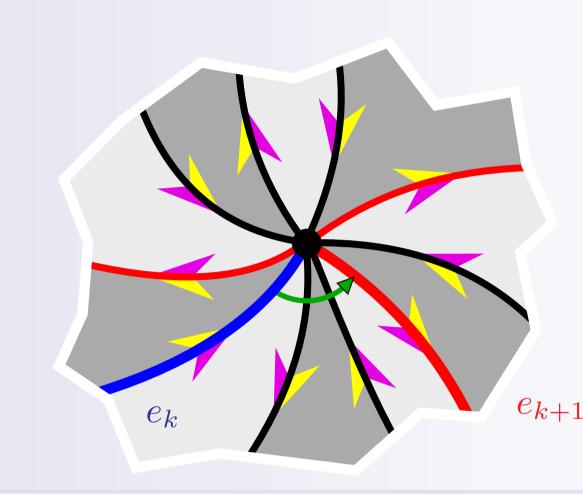
- light-left: light faces on the left of edges;
- light-right: light faces on the right of edges.

This defines an **oriented metric** \vec{d} .



Geodesic: shortest **oriented** path linking two given vertices.

Lightest geodesic: leftmost (resp. rightmost) geodesic if the considered orientation is the light-left (resp. light-right).



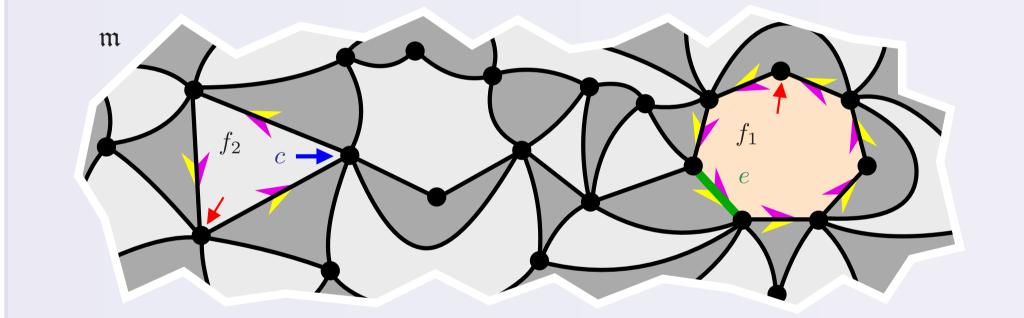
Edge types $(a_1 - \lceil a_1/p \rceil) (a_2 + 1) C(\boldsymbol{a}) = (\tilde{a}_1 + 1) (\tilde{a}_2 - \lceil \tilde{a}_2/p \rceil) C(\tilde{\boldsymbol{a}})$

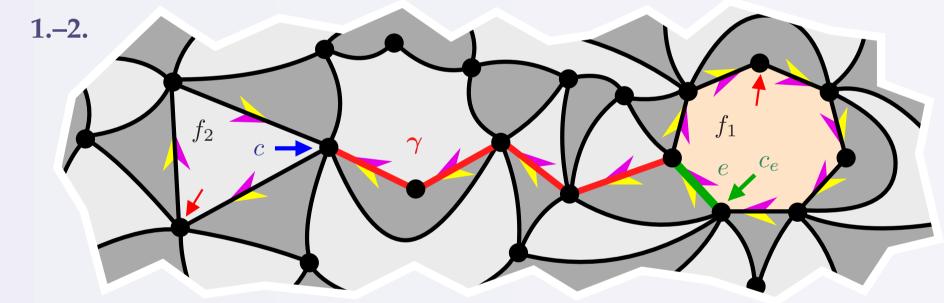
edge in f_1 leaving c

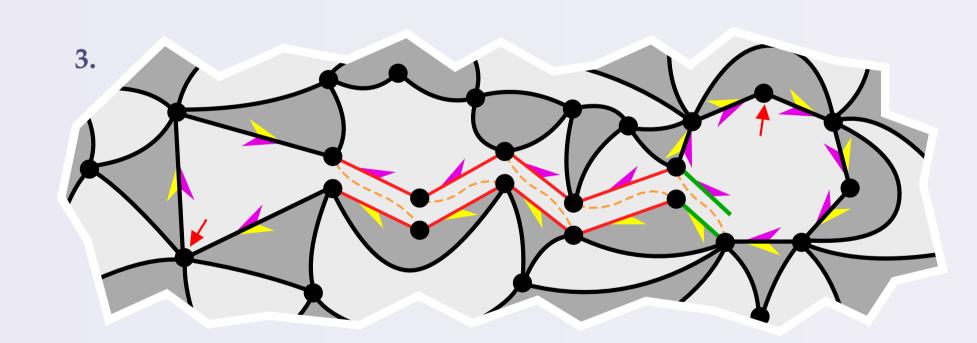
 $c \text{ in } f_2$

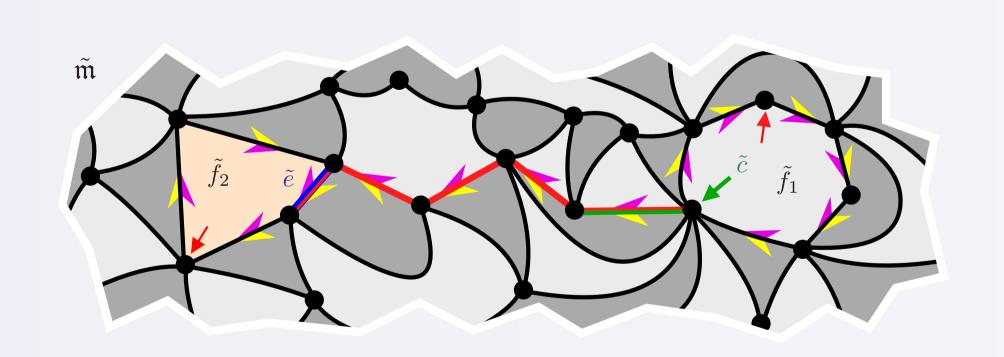
corner \tilde{c} in \tilde{f}_1

edge in $ilde{f}_2$ leaving \tilde{c}





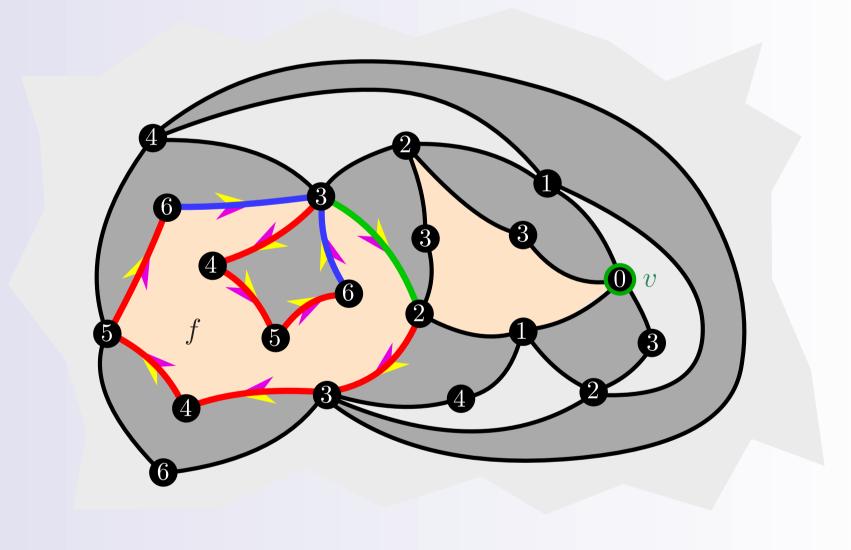




- 1. Reverse the orientation.
- 2. Consider the corner c_e preceding e and the lightest geodesic γ from c_e to c^+ .
- 3. Slit, slide, sew along γ from c_e to c: the light side of an edge is now matched with the dark side of the previous edge.
- **4.** In the resulting map $\tilde{\mathfrak{m}}$, denote by \tilde{c} the corner corresponding to the unmatched light side of the first edge of γ , as well as \tilde{e} the edge corresponding to the unmatched dark side of the final edge of γ .

Edge types. Three types of edges: the edge e is

- leaving v if $\vec{d}(v, e^+) = \vec{d}(v, e^-) + 1$;
- approaching v if $\vec{\mathsf{d}}(v,e^+) = \vec{\mathsf{d}}(v,e^-) + 1 p$;
- irregular w.r.t. v if $\vec{\mathsf{d}}(v,e^+) \vec{\mathsf{d}}(v,e^-) \not\equiv 1 \bmod p$.



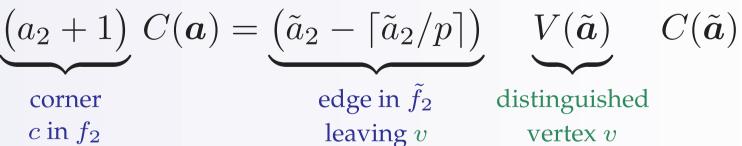
Prop. In a p-constellation or quasi-p-constellation, consider a $vertex \ v$ and a light face f of degree a, flawed in the case of aquasi-p-constellation. Then, among the a edges incident to f:

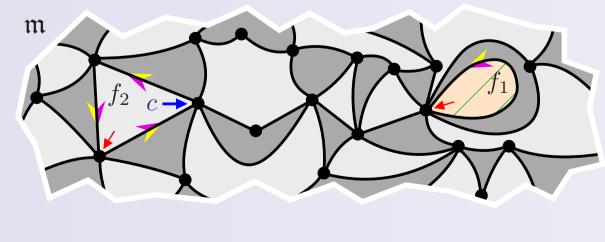
- $\bullet(a-\lceil a/p\rceil)$ are leaving v;
- $\lfloor a/p \rfloor$ are approaching v.

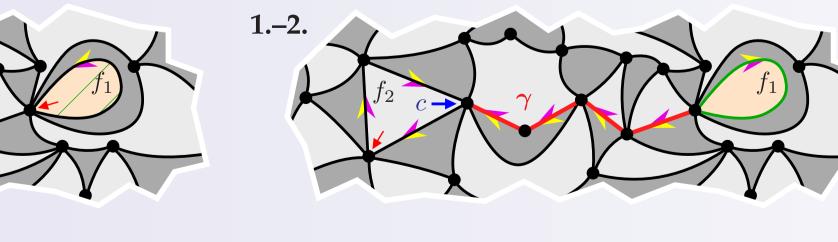
Case of a face of degree one

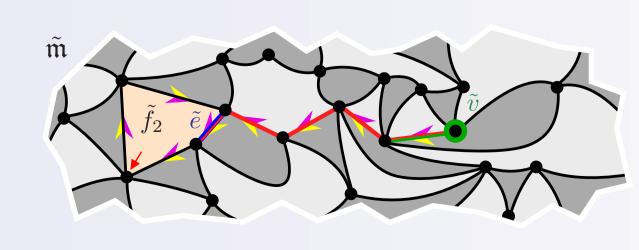
$$\mathbf{a} = (\mathbf{1}, a_2, \dots, a_r) \equiv (1, -1, 0, \dots, 0) \mod p,$$

$$\tilde{\mathbf{a}} = (\tilde{a}_2, \dots, \tilde{a}_r) := (a_2 + 1, a_3, \dots, a_r)$$





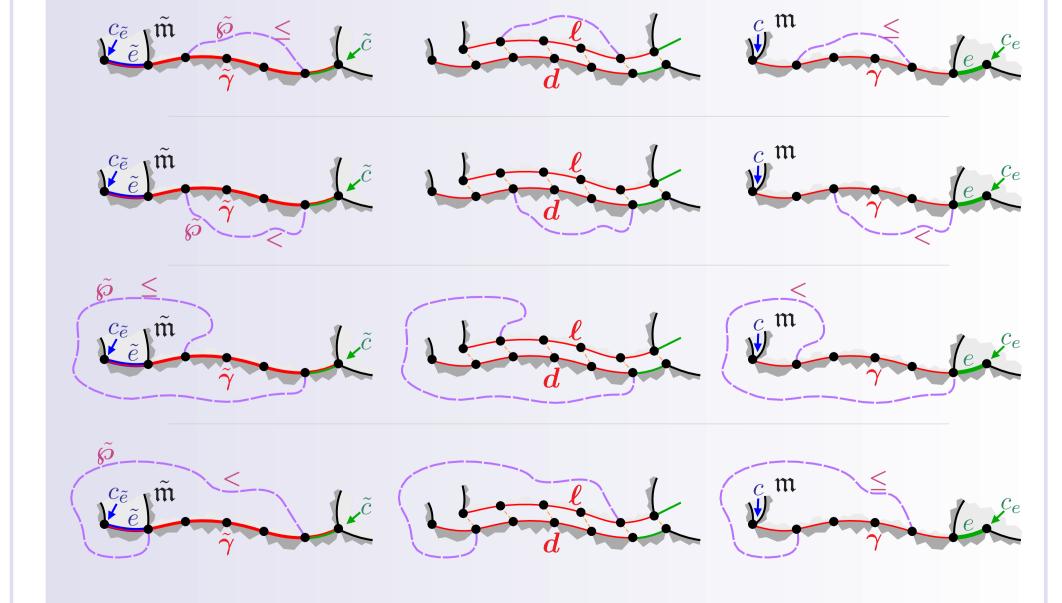




Suppressing f_1 .

- 1. Reverse the orientation.
- 2.–3. Slit, slide, sew along the lightest geodesic γ from the unique corner of f_1 to c^+ .
 - 4. In the resulting map $\tilde{\mathfrak{m}}$, denote by \tilde{v} the origin of γ , and \tilde{e} the final edge of γ .

Conservation of sliding paths



- If the sliding path $\tilde{\wp} \neq \tilde{\gamma}$, it uses a purple dashed circumventions.
- Tracking it back to the original map m yields a circumvention providing a better option than γ .

Adding a face.

- 1. Reverse the orientation.
- **2.–3.** Slit, slide, sew along the lightest geodesic from the corner preceding \tilde{e} to \tilde{v} without disconnecting the map at \tilde{v} .
 - **4.** Denote by f_1 the face that appears at the tip of the sliding path and by c the corner at its origin.