The commutant of divided difference operators, Klyachko's genus, and the comaj statistic

Allen Knutson (Cornell)

Goals

- Identify all operators on Schubert symbols that commute with the "partial" operators $\left\{\partial_{w}\right\}$, generalizing [HPSW]
- Determine which of those give differentials $(d(p q)=d p q+p d q)$
- Find relationships among known genera (ring maps from cohomology)
- Exploit genera to compute/constrain Schubert structure constants Dramatis Personæ

D Dynkin diagram
$A_{\mathbb{Z}^{+}} \quad$ type A Dynkin diagram with \mathbb{Z}^{+}as nodes
$A_{\mathbb{Z}} \quad$ type A Dynkin diagram with \mathbb{Z} as nodes
$W(D) \quad$ associated Weyl group
$H(D) \quad$ cohomology ring of flag variety associated with D
r_{α} or $r_{i} \quad$ simple reflection associated to simple root α or node i
$R W(\pi) \quad$ set of reduced words for $\pi \in W(D)$
$H\left(A_{\mathbb{Z}^{+}}\right) \quad$ generated by $\left\{S_{r_{i}}: i \in \mathbb{Z}^{+}\right\}$, (r_{i} simple reflection)
$H\left(A_{\mathbb{Z}}\right) \quad$ generated by $\left\{S_{r_{1} r_{2} \cdots r_{k}}\right\}$
Definition (Genera of the cohomology ring) We call a ring homomorphism from $H(D)$ to another ring a genus.

Example (The Lascoux-Schützenberger genus

Define $H\left(A_{\mathbb{Z}^{*}}\right) \longrightarrow \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ by

$$
S_{\pi} \mapsto S_{\pi}\left(x_{1}, x_{2}, \ldots\right),
$$

sending each Schubert symbol to the corresponding "Schubert polynomial" in variables x_{1}, x_{2}, \ldots. This map is an isomorphism.

Example (The Klyachko genus)

The Klyachko genus is the ma

$H\left(A_{\mathbb{Z}}\right) \xrightarrow{\iota^{*}} K:=\mathbb{Q}\left[\ldots, k_{-1}, k_{0}, \ldots\right] /\left\langle k_{i}\left(k_{i}-\frac{k_{i-1}+k_{i+1}}{2}\right), \forall i \in \mathbb{Z}\right\rangle$

$$
S_{\pi} \mapsto \frac{1}{\ell(\pi)!} \sum_{Q \in R W(\pi)} \prod_{q \in Q} k_{q}
$$

Klyachko considered the inclusion ι of the permutahedral toric variety (AKA the regular semisimple Hessenberg variety) into the flag manifold. The above map is related to a biinfinite limit of the induced map ι^{*} on H^{*}. Example (The affine-linear genus)
Define $\gamma: H\left(A_{\mathbb{Z}}\right) \longrightarrow \mathbb{Q}[a, b]$ by

$$
\mathcal{S}_{\pi} \longmapsto \frac{1}{\ell(\pi)!} \sum_{P \in R W(\pi)} \prod_{i \in P}(a i+b) ;
$$

with $R W(\pi)$ the set of reduced words for π Applying the $a=0, b=1$ case to $S_{\pi} S_{\rho}$ leads to Nenashev's theorem Theorem (First Rectification Theorem (Nenashev))
Let $R W(\pi)$ denote the set of reduced words for π. Then there exists (although the proof doesn't find one) some "rectification" map $\{$ shuffles of any word in $R W(\pi)$ with any word in $R W(\rho)\} \rightarrow \coprod R W(\sigma)$ whose fiber over any reduced word for σ has size $c_{\pi \rho}^{\sigma}$, the coefficient from $\mathcal{S}_{\pi} \mathcal{S}_{\rho}=\sum_{\sigma} c_{\pi \rho}^{\sigma} \mathcal{S}_{\sigma}$

Partials, martials, and nil Hecke actions
$\operatorname{Nil}(D)$ (nil Hecke algebra) is the formal linear combos of $\left\{d_{\pi}: \pi \in W(D)\right\}$ with product

$$
d_{\pi} d_{\rho}:= \begin{cases}d_{\pi \rho} & \text { if } \ell(\pi \rho)=\ell(\pi)+\ell(\rho) \\ 0 & \text { if } \ell(\pi \rho)<\ell(\pi)+\ell(\rho) .\end{cases}
$$

For α a vertex of D, define the "partial" operator $\partial_{\alpha} \circlearrowright H(D)$ by

$$
\partial_{\alpha} \mathcal{S}_{\pi}:= \begin{cases}\mathcal{S}_{\pi r_{\alpha}} & \text { if } \pi r_{\alpha}<\pi \\ 0 & \text { if } \pi r_{\alpha}>\pi\end{cases}
$$

We introduce the martial operator $\sigma_{\alpha}^{\lambda}$ by

$$
\sigma_{\alpha}^{\pi} \mathcal{S}_{\pi}:= \begin{cases}\mathcal{S}_{r_{\alpha} \pi} & \text { if } r_{\alpha} \pi<\pi \\ 0 & \text { if } r_{\alpha} \pi>\pi\end{cases}
$$

For $w=\prod Q$ with Q a reduced word, the operators $\partial_{w}:=\prod_{q \in Q} \partial_{q}$ and $O_{w^{-1}}^{\lambda}:=\prod_{q \in Q} O_{q}^{\lambda}$ are independent of Q.

- The algebra $\operatorname{Nil}(D)$ acts on $H(D)$ via $d_{\pi} \mapsto O_{\pi}^{\pi}$
- The opposite algebra $\operatorname{Nil}(D)^{\text {opp }}$ acts on $H(D)$ via $d_{\pi} \mapsto \partial_{\pi}$

Theorem (Commuting Actions)

The action of $\operatorname{Nil}(D)$ on $H(D)$ commutes with the $\operatorname{Nil}(D)^{\circ p}$-action. Furthermore, each operator on $H(D)$ that commutes with all operators ∂_{a} arises as the action of a unique element of $\operatorname{Nil(D).}$
One says that $\operatorname{Nil}(D)$ and $\operatorname{Nil}(D)^{o p}$ are each other's commutants on $H(D)$.

Theorem (The differentials that commute with $\left\{\partial_{i}\right\}$)

Let $\sum c_{\alpha} O_{\alpha}^{7} \in \operatorname{Nil}(D)$ be a degree -1 Leibniz differential. If D is simply laced, then $c_{\alpha}=\frac{1}{2} \sum_{\beta} c_{\beta}$ with sum over neighboring nodes. Thus for D of finite type, $c_{\alpha}=0$ for all α. For $D=A_{\mathbb{Z}^{+}}, c_{i} \equiv i$ (or a multiple) and for $D=A_{\mathbb{Z}}$, either $c_{i} \equiv i$ or $c_{i} \equiv 1$ (or a linear combination of the two). Thus the only differentials of degree -1 are linear combinations of

$$
\nabla=\sum_{m} m O_{m}^{\lambda} \quad\left(D=A_{\mathbb{Z}} \text { or } A_{\mathbb{Z}^{+}}\right) \quad \xi=\sum_{m} O_{m}^{\lambda}, \quad\left(D=A_{\mathbb{Z}}\right)
$$

∇ was found in [HPSW]. ξ was found in [N] and characterized differently. One can exponentiate differentials to get ring automorphisms.

Theorem (Relations between the genera)

The following triangles commute:

$$
\begin{aligned}
& H\left(A_{\mathbb{Z}}\right) \iota^{*} \\
& e^{a \nabla+b \xi} \gamma \\
& k_{i} \mapsto a i+b
\end{aligned}
$$

$\mathbb{Q}[a, b] \otimes_{\mathbb{Z}} H\left(A_{\mathbb{Z}}\right) \longrightarrow \mathbb{Q}[a, b]$
\mathcal{S}_{π}
$\delta_{\pi, e}$

Acknowledgments

CG was supported by a Klarman Fellowship at Cornell University. RG was partially supported by NSF grant DMS-2152312, AK by DMS-2246959.
Thanks also to Marcelo Aguiar, Hugh Dennin, Yibo Gao, Thomas Lam, Philippe Nadeau, Gleb Nenashev, Mario Sanchez, Thomas Bååth Sjöblom, and David E Speyer.

Definition (barred words, comaj, and q-statistic)

comaj (P)
sum of positions of ascents in reduced word P, e.g. comaj(6456) $=2+3$ barred word P for $\pi \quad$ reduced word in which some letters are overlined, e.g. $12 \overline{1}$ for (13) q-statistic of barred word (sum of barred letters) + comaj; e.g. q-statistic of $31 \overline{4}$ is $4+2$ shuffle \amalg of a pair (P, R) permutation of $P \amalg R$, preserving order of each of P and R inversions in shuffle $\amalg \quad$ for a pair (P, R), the number of "a letter in R leftward of a letter in P " q-statistic of a shuffle \amalg sum of the q-statistics of P and R, plus the \# of inversions in \amalg

Example (q-Klyachko genus (Nadeau-Tewari))

$$
\gamma_{q}: H\left(A_{\mathbb{Z}}\right) \rightarrow \mathbb{Q}(q)[\alpha, \beta] \quad \text { defined by } \quad S_{\pi} \mapsto \frac{1}{\ell(\pi)_{\cdot}^{q}} \sum_{P \in R W(\pi)} q^{\mathrm{comaj}(P)} \prod_{i \in P}\left(\alpha q^{i}+\beta\right)
$$

where $k^{q}:=1(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{k-1}\right)$.
We apply the Nadeau-Tewari genus to $S_{\pi} S_{\rho}$ to obtain a more refined rectification theorem:

Theorem (Second Rectification Theorem)

There exists (but the proof doesn't find one) a "rectification" map

$$
\{\text { shuffles of pairs }(P, R) \text { of barred words for } \pi, \rho\} \rightarrow \coprod_{\sigma}\{\text { barred words for } \sigma\}
$$

preserving \# of bars and q-statistic, whose fiber over each reduced word for σ has size $c_{\pi \rho}^{\sigma}$, the coefficient from $S_{\pi} S_{\rho}=\sum_{\sigma} c_{\pi \rho}^{\sigma} S_{\sigma}$
Example (Second Rectification Theorem)
Let $\pi=\rho=[12463578] \in S_{8}$ (length 3). We find the fiber over each fully barred σ
Each of $\pi=\rho$ has two (fully-barred) reduced words, $\overline{354}$ and $\overline{534}$, with comaj($\overline{354})=1$ and
comaj $(\overline{534})=2$. The sum of the barred numbers is 12 for both. For each (P, R), there are $\binom{6}{3}$ ways to shuffle. Thus: $2 \cdot 2 \cdot\binom{6}{3}=80$ shuffles \amalg; the q-statistics range from

$$
\begin{array}{ll}
26=1+12+1+12+0 & \text { for }(\overline{354}, \overline{354}) \text { with trivial shuffle } P R, \text { to } \\
37=2+12+2+12+3 \cdot 3 & \text { for }(\overline{534}, \overline{534}) \text { for reverse shuffle } R P .
\end{array}
$$

There are 7 terms \mathcal{S}_{σ} in $\mathcal{S}_{\pi} \mathcal{S}_{\rho}$ (one with coefficient 2) with various numbers of reduced words

$$
\text { q-statistic: } 262728293031323334353637
$$

In line 1 , we list the \# of fully barred shuffles with given q-statistic (totalling 80). Each subsequent row lists σ and the \# of fully barred words for it with given q-statistic. The second rectification theorem asserts that the \# atop each column is the sum of those below.

References

References
Z. Hamaker, O. Pechenik, D. Speyer, A. Weigandt, "Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley". arXiv:1812.00321
P. Nadeau and V. Tewari. "A q-deformation of an algebra of Klyachko and Macdonald's reduced word formula .arXiv:2106.03828
G. Nenashev. "Differential operators on Schur and Schubert polynomials." arXiv:2005.08329

