Cluster Algebras from Surfaces

Cluster algebras are recursively defined commutative rings with a set of distinguished generators called cluster variables, which appear in fixed-size subsets known as clusters [3]. Triangulated surfaces provide a geometric model for ordinary cluster algebras of surface type, where the clusters correspond to triangulations and the cluster variables correspond to arcs between these marked points [1].

Tagged Triangulations

To create complete geometric models for cluster algebras from punctured surfaces, [2] introduced the concept of tagged arcs. A tagged arc is an arc with ends tagged as either plain or notched and must not form a once-punctured monogon. We write $\eta^{(p)}$ to indicate when η has a single notched end at p and $\eta^{(p q)}$ when it is notched at both ends, p and q.

Compatible Examples:

Incompatible Examples:

Poset Construction

Let $T=\left\{\tau_{1}\right.$,
,$\left.\tau_{n}\right\}$ be a triangulation of the surface (S, M). For any $\operatorname{arc} \gamma$ on (S, M), we construct a corresponding poset P_{γ} as described in [6,7]. These posets P_{γ} correspond exactly to the posets of join-irreducibles in the lattice of perfect matchings of the snake graph G_{γ}, as outlined in [5, 8].

ExampLE

The loop fence poset $P_{\gamma^{(p q) ~}}$ and circular fence poset $P_{\gamma_{2}}$ for the arcs from the above figure. Note that the fence poset $P_{\gamma_{1}}$ for the plain arc γ_{1} appears as a subposet of $P_{\gamma_{1}^{(p q)}}$, indicated in blue.

Poset Expansion

Let γ be an arc or closed curve on a marked surface (S, M) with a triangulation T such that $\gamma \notin T$ Then, the corresponding element x_{γ} of the cluster algebra $\mathcal{A}(S, M)$, expressed in terms of the cluster associated with T, can be written as

$$
x_{\gamma}^{T}=\mathbf{x}^{\mathbf{g}_{\gamma}} \sum_{I \in J\left(P_{\gamma}\right)} w(I) .
$$

where $J(P)$ denote the poset of lower order ideals of a poset $P_{\gamma}, \mathbf{g}_{\gamma}$ is discussed below, and $w(I)$ denotes an associated weight of $I \in J(P)$ defined as $w(I)=\prod_{j \in I}\left(x_{C C W}\left(\tau_{i_{j}}\right) / x_{C W}\left(\tau_{i_{j}}\right)\right) y_{\tau_{i j}}$ In the above example, the arc $\gamma_{1}^{(p q)}$ corresponds to

G-VECTOR

If γ is notched at one or both endpoints, let γ^{0} be γ with a plain tag at both endpoints. The vector \mathbf{g}_{γ} is computed as follows

- minimal elements in $P_{\gamma^{0}}$ contribute negatively;
- maximal elements in $P_{\gamma^{0}}$ that cover two elements contribute positively; and
- arcs counterclockwise (clockwise) from a plain (notched) endpoint of γ contribute positively (negatively).
The vector \mathbf{g}_{γ} encodes

1. the weight of the minimal matching of the snake graph $G_{\gamma, T}$
2. the shear coordinate of γ with respect to T, and
3. a minimal injective presentation of the arc module associated to γ.

Construction

Consider two curves, γ_{1} and γ_{2}, with an incompatibility point s. Sometimes, γ_{1} and γ_{2} cross the same set of arcs before or after s, and we call this common set of arcs R. We define the sweep set, denoted $S w$, as the set of arcs an arc in the resolution pivots past clockwise at a plain endpoint or counterclockwise at a notched endpoint. In this resolution, the sets of arcs (multicurves) are labeled C^{+}and C^{-}, where C^{-}is the set that does not cross any arcs in R or $S w$.

Main Theorem

The fifteen cases described in [4] can be regrouped as transverse crossings of (1) a single arc (2) two arcs and (3) an arc and a closed curve as well as (4) incompatibility at a puncture. The resolution of any such incompatibility yields the following multiplication formula.

1. Let $\left\{\gamma_{1}, \gamma_{2}\right\}$ be a multicurve of arcs or closed curves which are incompatible. Choose one point of incompatibility and let C^{+}and C^{-}be the resolution at this intersection. Then,
$x_{\gamma_{1}} x_{\gamma_{2}}=x_{C^{+}}+Y_{R} Y_{S_{w}} x_{C}$
2. Let γ_{1} be an arc or closed curve which is incompatible with itself. Choose one point of incompatibility and let C^{+}and C^{-}be the resolution at this intersection.
Then, $x_{\gamma_{1}}=x_{C^{+}}+Y_{R} Y_{S w} x_{C}$

- Case 1: Incompatibility at Punctures

Here, the resolution will be written as

$$
x_{\gamma_{1}^{(p)}}^{\left(x_{\gamma_{2}}\right.}=x_{C^{+}}+y_{1} y_{2} y_{3} y_{4} x_{C}
$$

Case 2: Transverse Crossings

$R=\left\{\sigma_{3}, \sigma_{4}, \sigma_{5}\right\}$
$S w=\left\{\sigma_{6}\right\}$
The skein relation will be written as

$$
x_{\gamma_{1}} x_{\gamma_{2}}=x_{C^{+}}+y_{3} y_{4} y_{5} y_{6} x_{C}
$$

Proof Sketch

Let P_{i} be a poset for γ_{i} and $\mathbf{g}_{i}:=\mathbf{g}_{\gamma_{i}}$. We can express $x_{1} x_{2}$ as

$$
\mathbf{x}^{\mathbf{g}_{1}+\mathbf{g}_{2}} \sum_{\left(I_{1}, I_{2}\right) \in J\left(P_{1}\right) \times J\left(P_{2}\right)} w t\left(I_{1}\right) w t\left(I_{2}\right)
$$

where $w t(I)$ is a monomial determined by the content of I. Our primary focus is on finding a partition $J\left(P_{1}\right) \times J\left(P_{2}\right)=A \cup B$ and establishing bijections between A and $J\left(P_{\gamma_{3}}\right) \times J\left(P_{\gamma_{4}}\right)$ and between B and $J\left(P_{5}\right) \times J\left(P_{6}\right)$. The next step of our proof will be to show that, $\mathbf{g}_{1}+\mathbf{g}_{2}=\mathbf{g}_{3}+\mathbf{g}_{4}$, and $\mathbf{g}_{1}+\mathbf{g}_{2}+\operatorname{deg}_{\boldsymbol{x}}(Z)=\mathbf{g}_{5}+\mathbf{g}_{6}$ where Z is determined by R and $S w$.

Implications

- We immediately can show bracelets and bangles, as in [4], form a spanning set of the cluster algebra from a punctured surface.
- We recover a key statement concerning the linear independence of bracelets and bangles.
- Musiker, Schiffler, and Williams give multiple definitions of a cluster algebra element associated to a notched arc with self-intersection. We show that two of these definitions agree.

Future Directions

- Adapt the poset construction to generalized cluster algebras from orbifolds and study skein relations there.
- Use our skein relations to study extensions in skew-gentle algebras.

References

```
[1] Sergey Fomin, Michael Shapir
    Mathematica 201.1 (2008)
    Sergey Fomin and Dylan Thurston Cluster algebras and triangulated surfaces Partll:Lambdalengths.Vol. 255.1203. Amerem
    matical Society, 2018.
    Sergey Fomin and Andrei Zelevinsky "Cluster Algebras I: Foundations" In. Journal of the American Mathematical Socity 15 (2002)
    4] Gregg Musiker, Ralf Schiffler, and Lauren Williams. "Bases for cluster algebras from surfaces". In: Compositio Mathematica 149.2 (2013),
    pp. 217-263.
    Gregg Musiker, Ralf Schiffler, and Lauren Williams. "Positivity for cluster algebras from surfaces". In: Advances in Mathematics 227.6 (2011),
    Mp. 2241-2308.
    Ezgi Kantarcl Oğuz and Emine Yıldrrm. Cluster Expansions: T-walks, Labeled Posets and Matrix Calculations. 2024. arXiv: 2211.08011
    Vincent Pilaud, Nathan Reading, and Sibylle Schroll. "Posets for F-polynomials in cluster algebras from surfaces". In: arXiv preprint
    arXiv:2311.06033 (2023)
Jon Wilson. "Surface cluster algebra expansion formulae via loop graphs". In: arXiv preprint arXiv:2006.13218 (2020)
```

