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Cluster Algebras from Surfaces
Cluster algebras are recursively defined commutative rings with a set of distinguished generators
called cluster variables, which appear in fixed-size subsets known as clusters [3]. Triangulated
surfaces provide a geometric model for ordinary cluster algebras of surface type, where the
clusters correspond to triangulations and the cluster variables correspond to arcs between these
marked points [1].

Tagged Triangulations
To create complete geometric models for cluster algebras from punctured surfaces, [2] introduced
the concept of tagged arcs. A tagged arc is an arc with ends tagged as either plain or notched and
must not form a once-punctured monogon. We write η(p) to indicate when η has a single notched
end at p and η(pq) when it is notched at both ends, p and q.

Compatible Examples: ▷◁ ▷◁

▷◁
Incompatible Examples: ▷◁

▷◁

▷◁

Poset Construction
Let T = {τ1, . . . , τn} be a triangulation of the surface (S,M). For any arc γ on (S,M), we construct
a corresponding poset Pγ as described in [6, 7]. These posets Pγ correspond exactly to the posets
of join-irreducibles in the lattice of perfect matchings of the snake graph Gγ, as outlined in [5, 8].
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Figure: An example of an arc γ1 and closed curve γ2 on a triangulated surface.
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and circular fence poset Pγ2 for the arcs from the above figure. Note

that the fence poset Pγ1 for the plain arc γ1 appears as a subposet of P
γ
(pq)
1

, indicated in blue.

Poset Expansion
Let γ be an arc or closed curve on a marked surface (S,M) with a triangulation T such that γ < T .
Then, the corresponding element xγ of the cluster algebra A(S,M), expressed in terms of the
cluster associated with T , can be written as

xT
γ = xgγ

∑
I∈J(Pγ)

w(I).

where J(P) denote the poset of lower order ideals of a poset Pγ, gγ is discussed below, and w(I)
denotes an associated weight of I ∈ J(P) defined as w(I) =

∏
j∈I

(
xCCW(τij)/xCW(τij)

)
yτij

.
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g-vector
If γ is notched at one or both endpoints, let γ0 be γ with a plain tag at both endpoints. The vector
gγ is computed as follows:
• minimal elements in Pγ0 contribute negatively;
• maximal elements in Pγ0 that cover two elements contribute positively; and
• arcs counterclockwise (clockwise) from a plain (notched) endpoint of γ contribute positively

(negatively).
The vector gγ encodes
1. the weight of the minimal matching of the snake graph Gγ,T ,
2. the shear coordinate of γ with respect to T , and
3. a minimal injective presentation of the arc module associated to γ.

Construction
Consider two curves, γ1 and γ2, with an incompatibility point s. Sometimes, γ1 and γ2 cross the
same set of arcs before or after s, and we call this common set of arcs R. We define the sweep
set, denoted Sw, as the set of arcs an arc in the resolution pivots past clockwise at a plain
endpoint or counterclockwise at a notched endpoint. In this resolution, the sets of arcs
(multicurves) are labeled C+ and C−, where C− is the set that does not cross any arcs in R or Sw.

Main Theorem
The fifteen cases described in [4] can be regrouped as transverse crossings of (1) a single arc (2)
two arcs and (3) an arc and a closed curve as well as (4) incompatibility at a puncture. The
resolution of any such incompatibility yields the following multiplication formula.
1. Let {γ1,γ2} be a multicurve of arcs or closed curves which are incompatible. Choose one point

of incompatibility and let C+ and C− be the resolution at this intersection. Then,
xγ1xγ2 = xC+ + YRYSwxC−.

2. Let γ1 be an arc or closed curve which is incompatible with itself. Choose one point of
incompatibility and let C+ and C− be the resolution at this intersection.
Then, xγ1 = xC+ + YRYSwxC−.

Case 1: Incompatibility at Punctures
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Here, the resolution will be written as
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xγ2 = xC+ + y1y2y3y4xC−

Case 2: Transverse Crossings
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The skein relation will be written as

xγ1xγ2 = xC+ + y3y4y5y6xC−

Proof Sketch
Let Pi be a poset for γi and gi := gγi. We can express x1x2 as

xg1+g2
∑

(I1,I2)∈J(P1)×J(P2)

wt(I1)wt(I2)

where wt(I) is a monomial determined by the content of I. Our primary focus is on finding a
partition J(P1)× J(P2) = A ∪ B and establishing bijections between A and J(Pγ3)× J(Pγ4) and
between B and J(P5)× J(P6). The next step of our proof will be to show that, g1 + g2 = g3 + g4,
and g1 + g2 + degx(Z) = g5 + g6 where Z is determined by R and Sw.

Implications
• We immediately can show bracelets and bangles, as in [4], form a spanning set of the cluster

algebra from a punctured surface.
• We recover a key statement concerning the linear independence of bracelets and bangles.
• Musiker, Schiffler, and Williams give multiple definitions of a cluster algebra element associated

to a notched arc with self-intersection. We show that two of these definitions agree.

Future Directions
• Adapt the poset construction to generalized cluster algebras from orbifolds and study skein

relations there.
• Use our skein relations to study extensions in skew-gentle algebras.

References
[1] Sergey Fomin, Michael Shapiro, and Dylan Thurston. “Cluster algebras and triangulated surfaces, part I: Cluster complexes”. In: Acta

Mathematica 201.1 (2008).
[2] Sergey Fomin and Dylan Thurston. Cluster algebras and triangulated surfaces Part II: Lambda lengths. Vol. 255. 1223. American Mathe-

matical Society, 2018.
[3] Sergey Fomin and Andrei Zelevinsky. “Cluster Algebras I: Foundations”. In: Journal of the American Mathematical Society 15 (2002).
[4] Gregg Musiker, Ralf Schiffler, and Lauren Williams. “Bases for cluster algebras from surfaces”. In: Compositio Mathematica 149.2 (2013),

pp. 217–263.
[5] Gregg Musiker, Ralf Schiffler, and Lauren Williams. “Positivity for cluster algebras from surfaces”. In: Advances in Mathematics 227.6 (2011),

pp. 2241–2308.
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