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ASEP
The asymmetric simple exclusion process (ASEP) is a Markov chain for
particles hopping on a one-dimensional lattice such that each site contains
at most one particle. The ASEP was introduced independently in biology
by [Macdonald-Gibbs-Pipkin], and in mathematics by [Spitzer]. There are
many versions of the ASEP: the lattice is not necessarily finite. It can
have open boundaries, or be a ring [Liggett]. Particles can have differ-
ent species/types/colors, and this variation is called the multispecies ASEP
(mASEP). We study yet another variation of the mASEP in which q particles
with species 1, . . . , p hop along a circular lattice with n sites, but also the
particles are allowed to spontaneously change from one species to another.
This is a discrete analogue of evaporation and deposition.
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Fig. 1: The state diagram of DASEP(3, 2, 2): 3 sites, 2 species, 2 particles

Let n, p, q be positive integers with n > q, and let u, t ∈ [0, 1) be constants.
Introduced by [Ash], the doubly asymmetric simple exclusion process
DASEP(n, p, q) is a Markov chain on the set of words (or weak compositions)
of length n in 0, . . . , p with n− q zeros: The transition probability P (µ, ν)
on two states µ and ν is as follows:

• If µ = AijB and ν = AjiB (where A and B are words in 0, . . . , p) with
i ̸= j, then P (µ, ν) = t

3n if i > j and P (µ, ν) = 1
3n if j > i.

• If µ = iAj and ν = jAi with i ̸= j, then P (µ, ν) = t
3n if j > i and

P (µ, ν) = 1
3n if i > j.

• If µ = AiB and ν = A(i + 1)B with i ≤ p− 1, then P (µ, ν) = u
3n.

• If µ = A(i + 1)B and ν = AiB with i ≥ 1, then P (µ, ν) = 1
3n.

•Otherwise P (µ, ν) = 0 for µ ̸= ν and P (µ, µ) = 1−∑
ν ̸=µP (µ, ν).

This Markov chain is irreducible and aperiodic, so it has a unique stationary
distribution π given by rational functions in u, t, which satisfies the global
balance equations π(µ)

∑
ν ̸=µP (µ, ν) =

∑
ν ̸=µ π(ν)P (ν, µ) for any state µ.

For convenience, we clear the denominators and obtain the “unnormalized
steady state probabilities” πDASEP which are proportional to the stationary
distribution by a factor of the partition function Zp,q

n =
∑

µ∈Γp,q
n
πDASEP(µ).

We require the unnormalized steady state probabilities to be coprime so they
are uniquely defined.

Theorem
Consider DASEP(n, p, q) for any positive integers n, p, q with n > q.

(1) For any two binary words w,w′ ∈
(
[n]
q

)
, we have πDASEP(w) = πDASEP(w

′).

(2) For any binary word w ∈
(
[n]
q

)
and partition λ = 1m12m2 · · · pmp with m1 + · · · +mp = q, we have∑

µ∈Sw
n (λ)

πDASEP(µ) = u|λ|−q

(
q

m1,m2, . . . ,mp

)
πDASEP(w).

Corollary
Let t = 1, then our model is symmetric, dubbed the “doubly symmetric simple exclusion process
(DSSEP)”. It is a generalization of the model considered by [Salez], which is an exclusion process on a
graph (a circle in our case) with a reservoir of particles at each vertex. Recall that [p+1]u = 1+u+· · ·+up

denotes the u analog of the integer p + 1. The partition function of DSSEP(n, p, q) is(
n

q

)
(1 + u + · · · + up)q =

(
n

q

)
([p + 1]u)

q.

Proof via lumping
The projection map on the state space of the DASEP by forgetting the order of the particles but preserving
the position of empty sites is a lumping of the DASEP onto what we call the colored Boolean process.
Its state space consists of pairs of binary words with q ones and partitions of length q whose largest part
is not greater than p:

Ωp,q
n = {(w, λ)|w ∈

(
[n]

q

)
, λ1 ≤ p, ℓ(λ) = q}.

(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))

Fig. 2: The state diagram of DASEP(3, 2, 2) after projection

Theorem
Consider the colored Boolean process on n, p, q.

(1) The steady state probabilities of all binary words with the trivial partition are equal, i.e.,

πCBP(w, 0
n−q1q) = πCBP(w

′, 0n−q1q), for all w,w′ ∈
(
[n]

q

)
.

(2) The steady state probability of an arbitrary state (w, λ) can be expressed in terms of the steady state
probability of the corresponding state (w, 0n−q1q) with the trivial partition 0n−q1q as follows:

πCBP(w, λ) = u|λ|−q

(
q

m1, . . . ,mp

)
πCBP(w, 0

n−q1q).

Theorem
Let (ak)k≥0 and (bk)k≥−1 be polynomial sequences in u, t satisfying the re-
currence relation

ak = (u + 2t + 3)ak−1 − (t + 1)2ak−2

bk = (u + 2t + 3)bk−1 − (t + 1)2bk−2.

with initial conditions b−1 = 0, a0 = b0 = 1, a1 = u + 3t + 4.
Consider matchings M in the cycle C2k+1 or the path L2k+1 with (2k + 1)
vertices. Assign each matching M a weight of (t + 1)|M |(u + 1)k−|M |. Then
the stationary distributions of DASEP(2k+1, 2, 2) and DASEP(2k+2, 2, 2)
are given by the tables below in which ak is the generating function of the
matchings in C2k+1, and bk is the generating function of the matchings in
L2k+1, i.e.,

ak =
∑

M :C2k+1

(t + 1)|M |(u + 1)k−|M |

bk =
∑

M :L2k+1

(t + 1)|M |(u + 1)k−|M |.

t+ 1 t+ 1 t+ 1 u+ 1

Fig. 3: a1 = u + 3t + 4
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Fig. 4: b1 = u + 2t + 3

µ πDASEP(2k+1,2,2)(µ)

Sn((1, 1, 0, . . . , 0)) ak
0 . . . 010m20 . . . 0 uak + u(t− 1)(t + 1)mak−m−1, (0 ≤ m < k)

0 . . . 020m10 . . . 0 uak − u(t− 1)(t + 1)mak−m−1, (0 ≤ m < k)

Sn((2, 2, 0, . . . , 0)) u2ak

µ πDASEP(2k+2)(µ)

Sn((1, 1, 0, . . . , 0)) bk
0 . . . 010m20 . . . 0 ubk + u(t− 1)(t + 1)mbk−m−1, (0 ≤ m ≤ k)

0 . . . 020m10 . . . 0 ubk − u(t− 1)(t + 1)mbk−m−1, (0 ≤ m ≤ k)

Sn((2, 2, 0, . . . , 0)) u2bk
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