Inhomogeneous particle process defined by canonical Grothendieck polynomials
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1. Introduction

We construct a time, particle, and position inhomogeneous dis-
crete time particle process on the nonnegative integers that gen-
eralizes one of those studied in a Dieker and Warren [DWO0S].
The particles move according to an inhomogeneous geometric
distribution and stay in (weakly) decreasing order, where smaller
particles block larger particles. We show that the transition prob-
abilities for our particle process is given by a (refined) canonical
Grothendieck function up to a simple overall factor.

2. Grothendieck polynomial

Let P denote the set of all partitions A = (A > Ay > -+ > 0),
drawn in English convention, with /()\) = max,(A\, > 0) < oo being
the length of A\. A hook is a partition 1™ with arm a« — 1 and leg
m. Xp = (1,...,2Tn,0,0,...)indeterminates. We take parameters
o = (Oq, a9, . . ) and 3 = (51, Bo, .. )

Definition 1 A hook-valued tableau of shape ) is a filling of the
Young diagram by hook shaped tableau, fillings of a hook shape
with entries weakly (resp. strictly) increasing along the arm (resp.
leg), satisfying the local conditions
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Definition 2 The (refined) canonical Grothendieck function /s
the generating function
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where we sum over all hook-valued tableaux T’ of shape \, prod-
uct over all entries b in'T' with a(b) (resp. b(b)) the arm (resp. leg)
of the shape of b and i (resp. j) the row (resp. column) of b.

The set {G)(xn;a,8)}\ep IS @ basis for symmetric functions
(see, e.g., [HIKSS24]). We can define the skew canonical
Grothendiecks G s, by G yy = G and the branching rule

Gy Fnymio, B) = Y Gyylymia, B)G,y,(xn; e, B). (1)
pCrCA

Remark 3 This is not the natural skew shape definition G, ,.
(See [IMS24, Sec. 4.1]).

3. TASEP

We consider additional parameters « = (7, m9,...). Let G(j,17) be
the position of the j-th particle at time ¢ given by

G(j,1) =min(G(j,i — 1) +wj;, G(j — 1,i — 1)), (2)

(G(0,7 — 1) := oo0), where the random variable w;; is determined
by the inhomogeneous geometric distribution (which depends
on G(j,7 — 1)) defined as

m+ﬁ/1 (ag + m))w;

l + oz, .

(3)
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In other words, the j-th particle at time 7 attempts to jump w;
steps, but can be blocked by the (5 — 1)-th particle, which updates
its position after the j-th particle moves.

Figure 1: A sampling of 10000 samples of the inhomogeneous ge-
ometric distribution Pg for z; = 1, T = .5, and a;. = 1 — ke F/2
(blue), compared with the exact distribution (red) and the geomet-
ric distribution with parameter «;x; (green).

The a parameters act as a current being applied to the sys-
tem, where the strength (and direction) can vary at each position.
When a < 0, the « acts as (position-based) viscosity. Locations
where certain particles must stop can be given by —a;, = ;.
Theorem 4 ([IMS23]) Suppose ((\) < {, mx; € (0,1), agpr; > —1,
and oy +m; >0 foralli,j, k. Set; =m;1. Let Pc ,,(Aun) denote
the n-step transition probability for the particle system using the
distribution (3) for the jump probability of the particles with inter-
actions given by (2). Then,

n

Pen(Mp) =[]0 = map)(@+mMIGy g, (x0; 0, B),
i=1
where (& + 7)MH = 1L jyer/ul@iz1+mj). (The oy may not be 0.)
Remark 5 Our TASEP at B3 = 0 Iis the same model as a special
case of [KPS19] (with a shift to fermionic indexing).
We can similarly define a Bernoulli process with the position-
dependent probability with rates (pq, p2,...) by
(pi - 577”&)552 (4)
R)
Theorem 6 ([IMS23]) Suppose A\ < ¢, Byx; € (0,1), pjz; > —1,
andp;+ B, > 0foralli,j k. Seta; = p;y1. The n-step transition

probability for the particle system using Bernoulli jumps according
to the distribution (4) is given by

(B +p)H

Pplwji=11G(j.i—1) =m):=

PBn(Alp) = )G)\'//M’(Xm a, 3).
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Figure 2: Samples of our process with ¢ = 500 particles after
n = 50000 ime steps with (left) m = 1, x = 0.01, and o« = —0.5;
(right) T = 0.5, x = .2, and oy, = 0.5 sin(k/50)°.

4. Noncommutative operators

The Schur operator k;: k|P| — k[P| adds a box to the i-th row
of X\ if possible and is 0 otherwise. Define the linear operator

—Oz)\z.)\ If A < Aj_1,

. (5)
BiaA AN = A1,

Ui =kr;+0;, where 0O, -\ := {

Lemma 7 ([IMS24]) U = {U;}>°, satisfy the weak Knuth relations

To relate our TASEP with U, we use the basis {{®Pl(\|},cp
of the (dual) fermion Fock space F' such that [@8l(y|ef (x:) =
>\ G yp(xns o, B) - (2PN, where ef1X1) is a vertex operator act-
ing on FT. Assume o = 0 for simplicity. Via the skew Cauchy for-

mula [IMS24, HIKSS24] with particular specializations and com-
binatorial description [HIJKSS24], we obtain
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(8, = mj41). We restrict to a single timestep at time 7 to en-
code the growth process by U. Since we have a Markov pro-
cess, Pcin(Au) = >, Pen(Alv)Pey(v|i), which agrees with
the branching rules (1). Define the time evolution operator

To=> hp(zU) =) 27h,(U), (7)
k=0 k=0

where h;.(U) is the noncommutative complete symmetric function.
By some plethystic manipulations as in [IMS23, Sec. 4.2],

[aﬁ]weH(mi) _ H<1 _ ijz.)—l e (Te - .
j=2

Thus, if we consider the expansion [*8(T¢ - u| = 37y By ,-[®Pl(N|,
and matching coefficients in (6), we obtain the one-step transition
probability at time i:
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We could also prove Theorem 4 by using the combinatorics of
hook-valued tableaux as in [IMS23, Sec. 5.3], where the positions
of the particles is dictated by the smallest value in each entry of
the hook-valued tableaux. The key observation is that we have a
factor z;(1 — ;)" for every box in the k-th column that would
normally contain an ¢ in the set-valued tableaux (over all k), or
where there is no arm. The leg (the column part except for the
corner) corresponds to the choice between 1 and —m;x; in the
numerator of the normalization constant as in [IMS23, Sec. 5.3].

5. One time step example

Example 8 Let 1 = (1,1), ap =0, andw; =0 forall j > 3. As

hi(u3) = vy + ug + ug,
ho(us) = u% + ujuo + ujus + u% + uoug + u%,
hs(ug) = u% + u%uz + u%ug + ulu% + ujuous
+ ulug + u% + u%ug + u2u§ + u%,

we compute

hi(Us) - p= (—oqH+

ho(U3) - p = (@%E— (o1 + )+ - ') + 81 (—aiH+H)
+ (—a1§+: ') + BiH+ 81 +52@,

h3(U3) - p = (—@%E+h2(0417042> — hiag, a9, ) + ')

+ 01 (OK%E—(O&1+042) o+ ')+(a%ﬁ—(oq+a2)_ s ')

+ B (_0413+_ ) + B (-OqﬂﬂL_ l) + 52 (—041 + O l)

+ 58+ B2+ ms + 63

Let A, = —ap ={—ay,...,—ay}. Therefore, we have

BT pl = (1+ ha(By U Ay)ag + ho(By U Apa? + )
+ 2;(1+ hy(By U Ao)a + ho(By U Ag)a? + - - ) - Bl
+ 2i(1+ hi(By U A + ho(Bo U Ap)ay + -+ ) - [a’ﬁ]ﬂa LA+

Pl
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Using 8; = 7,1, @PN(T¢ - 1| is simplified as

1 1
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Seeing coefficients, we obtain the one-step transition probabilities
attime i:

(1 — ma;)(1 — max;)

Pe(1, 1) = |
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