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1. Introduction

We construct a time, particle, and position inhomogeneous dis-
crete time particle process on the nonnegative integers that gen-
eralizes one of those studied in a Dieker and Warren [DW08].
The particles move according to an inhomogeneous geometric
distribution and stay in (weakly) decreasing order, where smaller
particles block larger particles. We show that the transition prob-
abilities for our particle process is given by a (refined) canonical
Grothendieck function up to a simple overall factor.

2. Grothendieck polynomial

Let P denote the set of all partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ 0),
drawn in English convention, with ℓ(λ) = maxℓ(λℓ > 0) < ∞ being
the length of λ. A hook is a partition a1m with arm a− 1 and leg
m. xn := (x1, . . . , xn, 0, 0, . . .) indeterminates. We take parameters
α = (α1, α2, . . .) and β = (β1, β2, . . .).
Definition 1 A hook-valued tableau of shape λ is a filling of the
Young diagram by hook shaped tableau, fillings of a hook shape
with entries weakly (resp. strictly) increasing along the arm (resp.
leg), satisfying the local conditions
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Definition 2 The (refined) canonical Grothendieck function is
the generating function

Gλ(xn;α,β) =
∑
T

∏
b∈T

(−αi)
a(b)(−βj)

b(b)x
#1(b)
1 · · · x#n(b)

n ,

where we sum over all hook-valued tableaux T of shape λ, prod-
uct over all entries b in T with a(b) (resp. b(b)) the arm (resp. leg)
of the shape of b and i (resp. j) the row (resp. column) of b.
The set {Gλ(xn;α,β)}λ∈P is a basis for symmetric functions
(see, e.g., [HJKSS24]). We can define the skew canonical
Grothendiecks Gλ//µ by Gλ//∅ = Gλ and the branching rule

Gλ//µ(xn,ym;α,β) =
∑

µ⊆ν⊆λ

Gλ//ν(ym;α,β)Gν//µ(xn;α,β). (1)

Remark 3 This is not the natural skew shape definition Gλ/µ.
(See [IMS24, Sec. 4.1]).

3. TASEP

We consider additional parameters π = (π1, π2, . . .). Let G(j, i) be
the position of the j-th particle at time i given by

G(j, i) = min
(
G(j, i− 1) + wji, G(j − 1, i− 1)

)
, (2)

(G(0, i − 1) := ∞), where the random variable wij is determined
by the inhomogeneous geometric distribution (which depends
on G(j, i− 1)) defined as

PG(wji = m′ | G(j, i− 1) = m) :=
1− πjxi

1 + αm+m′xi

m+m′−1∏
k=m

(αk + πj)xi
1 + αkxi

.

(3)

In other words, the j-th particle at time i attempts to jump wji
steps, but can be blocked by the (j− 1)-th particle, which updates
its position after the j-th particle moves.

Figure 1: A sampling of 10000 samples of the inhomogeneous ge-
ometric distribution PG for xi = 1, πj = .5, and αk = 1 − ke−k/2

(blue), compared with the exact distribution (red) and the geomet-
ric distribution with parameter πjxi (green).

The α parameters act as a current being applied to the sys-
tem, where the strength (and direction) can vary at each position.
When α < 0, the α acts as (position-based) viscosity. Locations
where certain particles must stop can be given by −αk = πj.
Theorem 4 ([IMS23]) Suppose ℓ(λ) ≤ ℓ, πjxi ∈ (0, 1), αkxi > −1,
and αk + πj ≥ 0 for all i, j, k. Set βj = πj+1. Let PC,n(λ|µ) denote
the n-step transition probability for the particle system using the
distribution (3) for the jump probability of the particles with inter-
actions given by (2). Then,

PC,n(λ|µ) =
n∏
i=1

(1− π1xi)(α⃗ + π)λ/µGλ//µ(xn;α,β),

where (α⃗+π)λ/µ :=
∏

(i,j)∈λ/µ(αi−1+ πj). (The α0 may not be 0.)
Remark 5 Our TASEP at β = 0 is the same model as a special
case of [KPS19] (with a shift to fermionic indexing).
We can similarly define a Bernoulli process with the position-
dependent probability with rates (ρ1, ρ2, . . . ) by

PB(wji = 1 | G(j, i− 1) = m) :=
(ρj + βm)xi
1 + ρjxi

. (4)

Theorem 6 ([IMS23]) Suppose λ1 ≤ ℓ, βkxi ∈ (0, 1), ρjxi > −1,
and ρj + βk ≥ 0 for all i, j, k. Set αj = ρj+1. The n-step transition
probability for the particle system using Bernoulli jumps according
to the distribution (4) is given by

PB,n(λ|µ) =
(β⃗ + ρ)λ/µ∏n
i=1(1 + ρ1xi)

Gλ′//µ′(xn;α,β).

Figure 2: Samples of our process with ℓ = 500 particles after
n = 50000 time steps with (left) π = 1, x = 0.01, and α = −0.5;
(right) π = 0.5, x = .2, and αk = 0.5 sin(k/50)6.

4. Noncommutative operators

The Schur operator κi : k[P ] → k[P ] adds a box to the i-th row
of λ if possible and is 0 otherwise. Define the linear operator

Ui := κi + Θi, where Θi · λ :=

{
−αλi

λ if λi < λi−1,

βi−1λ if λi = λi−1,
(5)

Lemma 7 ([IMS24]) U = {Ui}∞i=1 satisfy the weak Knuth relations

To relate our TASEP with U, we use the basis {[α,β]⟨λ|}λ∈P
of the (dual) fermion Fock space F† such that [α,β]⟨µ|eH(xn) =∑

λGλ//µ(xn;α,β) · [α,β]⟨λ|, where eH(xn) is a vertex operator act-
ing on F†. Assume α0 = 0 for simplicity. Via the skew Cauchy for-
mula [IMS24, HJKSS24] with particular specializations and com-
binatorial description [HJKSS24], we obtain

[α,β]⟨µ|eH(xn) =

n∏
i=1

(1− π1xi)
−1

∑
λ⊇µ

PC,n(λ|µ)
(α⃗ + π)λ/µ

· [α,β]⟨λ|. (6)

(βj = πj+1). We restrict to a single timestep at time i to en-
code the growth process by U. Since we have a Markov pro-
cess, PC,n+n′(λ|µ) =

∑
ν PC,n(λ|ν)PC,n′(ν|µ), which agrees with

the branching rules (1). Define the time evolution operator

TC :=

∞∑
k=0

hk(xiU) =

∞∑
k=0

xki hk(U), (7)

where hk(U) is the noncommutative complete symmetric function.
By some plethystic manipulations as in [IMS23, Sec. 4.2],

[α,β]⟨µ|eH(xi) =

∞∏
j=2

(1− πjxi)
−1 · [α,β]⟨TC · µ|.

Thus, if we consider the expansion [α,β]⟨TC ·µ| =
∑

λBλµ · [α,β]⟨λ|,
and matching coefficients in (6), we obtain the one-step transition
probability at time i:

PC(λ|µ) =
Bλµ

(α⃗ + π)λ/µ

∞∏
j=1

(1− πjxi)
−1.

We could also prove Theorem 4 by using the combinatorics of
hook-valued tableaux as in [IMS23, Sec. 5.3], where the positions
of the particles is dictated by the smallest value in each entry of
the hook-valued tableaux. The key observation is that we have a
factor xi(1 − αkxi)

−1 for every box in the k-th column that would
normally contain an i in the set-valued tableaux (over all k), or
where there is no arm. The leg (the column part except for the
corner) corresponds to the choice between 1 and −πixj in the
numerator of the normalization constant as in [IMS23, Sec. 5.3].

5. One time step example

Example 8 Let µ = (1, 1), α0 = 0, and πj = 0 for all j > 3. As

h1(u3) = u1 + u2 + u3,

h2(u3) = u21 + u1u2 + u1u3 + u22 + u2u3 + u23,

h3(u3) = u31 + u21u2 + u21u3 + u1u
2
2 + u1u2u3

+ u1u
2
3 + u32 + u22u3 + u2u

2
3 + u33,

we compute

h1(U3) · µ =
(
−α1 +

)
+ β1 + ,

h2(U3) · µ =
(
α21 − (α1 + α2) +

)
+ β1

(
−α1 +

)
+
(
−α1 +

)
+ β21 + β1 + β2 ,

h3(U3) · µ =
(
−α31 + h2(α1, α2) − h1(α1, α2, α3) +

)
+ β1

(
α21 − (α1 + α2) +

)
+
(
α21 − (α1 + α2) +

)
+ β21

(
−α1 +

)
+ β1

(
−α1 +

)
+ β2

(
−α1 +

)
+ β31 + β21 + β1β2 + β22 .

Let Ak = −αk = {−α1, . . . ,−αk}. Therefore, we have

[α,β]⟨TC · µ| = (1 + h1(β1 ⊔ A1)xi + h2(β1 ⊔ A1)x
2
i + · · · ) · [α,β]⟨1, 1|

+ xi(1 + h1(β1 ⊔ A2)xi + h2(β1 ⊔ A2)x
2
i + · · · ) · [α,β]⟨2, 1|

+ xi(1 + h1(β2 ⊔ A1)xi + h2(β2 ⊔ A1)x
2
i + · · · ) · [α,β]⟨1, 1, 1| + · · ·

Using βj = πj+1, [α,β]⟨TC · µ| is simplified as

(1 + α1xi)
−1

1− π2xi
· [α,β]⟨1, 1| + (α1xi + π1xi)(1 + α1xi)

−1(1 + α2xi)
−1

(1− π2xi)(α⃗ + π)(2,1)/µ
· [α,β]⟨2, 1|

+
π3xi(1 + α1xi)

−1

(1− π2xi)(1− π3xi)(α⃗ + π)(1,1,1)/µ
· [α,β]⟨1, 1, 1| + · · · .

Seeing coefficients, we obtain the one-step transition probabilities
at time i:

PC(1, 1|µ) =
(1− π1xi)(1− π3xi)

(1 + α1xi)
,

PC(2, 1|µ) =
(α1xi + π1xi)(1− π1xi)(1− π3xi)

(1 + α1xi)(1 + α2xi)
,

PC(1, 1, 1|µ) =
π3xi(1− π1xi)

(1 + α1xi)
, etc.
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