Inhomogeneous particle process defined by canonical Grothendieck polynomials

Shinsuke Iwao＊1，Kohei Motegi＊2，and Travis Scrimshaw＊3

（1）Faculty of Business and Commerce，Keio University．iwao－s＠keio．jp，（2）Faculty of Marine Technology，Tokyo University of Marine Science and Technology．kmotego＠kaiyodai．ac．jp， （3）Department of Mathematics，Hokkaido University．tcscrims＠gmail．com

．Introduction

We construct a time，particle，and position inhomogeneous dis－ crete time particle process on the nonnegative integers that gen－ The particles move according to an inhomogeneous geometric distribution and stay in（weakly）decreasing order，where smaller particles block larger particles．We show that the transition prob－ abilities for our particle process is given by a（refined）canonical Grothendieck function up to a simple overall factor．

2．Grothendieck polynomial

Let \mathcal{P} denote the set of all partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)$ ，
drawn in English convention，with $\ell(\lambda)=\max _{\ell}\left(\lambda_{\ell}>0\right)<\infty$ being drawn in English convention，with $\ell(\lambda)=\max _{\ell}\left(\lambda_{\ell}>0\right)<\infty$ being
he length of λ ．A hook is a partition $a 1^{m}$ with arm $a-1$ and leg m ． $\mathbf{x}_{n}:=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right)$ indeterminates．We take parameters $m . \mathbf{x}_{n}:=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right)$ indeterminates．We take parameters
$\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ and $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots\right)$. Definition $1 A$ hook－valued tableau of shape λ is a filling of the Young diagram by hook shaped tableau，fillings of a hook shape with entries weakly（resp．strictly）increasing along the arm（resp． leg），satisfying the local conditions
$\max (\mathrm{a}) \leq \min (\mathrm{b})$

Definition 2 The（refined）canonical Grothendieck function is the generating function

$$
G_{\lambda}\left(\mathbf{x}_{n} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right)=\sum_{T} \prod_{\mathrm{b} \in T}\left(-\alpha_{i}\right)^{a(\mathrm{~b})}\left(-\beta_{j}\right)^{b(\mathrm{~b}} x_{1}^{\# 1(\mathrm{~b})} \cdots x_{n}^{\# n(\mathrm{~b})}
$$

where we sum over all hook－valued tableaux T of shape λ ，prod uct over all entries b in T with $a(\mathrm{~b})$（resp．$b(\mathrm{~b}))$ the arm（resp．leg） of the shape of b and i（resp．j）the row（resp．column）of b ． The set $\left\{G_{\lambda}\left(\mathbf{x}_{n} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right)\right\}_{\lambda \in \mathcal{P}}$ is a basis for symmetric functions see，e．g．，［HJKSS24］）．We can define the skew canonica Grothendiecks $G_{\lambda / \mu}$ by $G_{\lambda / \emptyset}=G_{\lambda}$ and the branching rule
$G_{\lambda / \mu}\left(\mathbf{x}_{n}, \mathbf{y}_{m} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right)=\sum_{\mu \subseteq \nu \subseteq \lambda} G_{\lambda / \nu}\left(\mathbf{y}_{m} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right) G_{\nu / / \mu}\left(\mathbf{x}_{n} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right) . \quad$（1）
Remark 3 This is not the natural skew shape definition $G_{\lambda / \mu}$ （See［IMS24，Sec．4．1］）

[^0]In other words，the j－th particle at time i attempts to jump w_{j} steps，but can be blocked by the $(j-1)$－th particle，which updates its position after the j－th particle moves．

Figure 1：A sampling of 10000 samples of the inhomogeneous ge ometric distribution $\mathrm{P}_{\mathcal{G}}$ for $x_{i}=1, \pi_{j}=.5$ ，and $\alpha_{k}=1-k e^{-k / 2}$ （blue），compared with the exact distribution（red）and the geomet
ric distribution with parameter $\pi_{j} x_{i}$（green）．

The α parameters act as a current being applied to the sys－ tem，where the strength（and direction）can vary at each position． When $\alpha<0$ ，the α acts as（position－based）viscosity．Locations where certain particles must stop can be given by $-\alpha_{k}=\pi_{j}$ ． Theorem 4 （IIMS23］）Suppose $\ell(\lambda) \leq \ell, \pi_{j} x_{i} \in(0,1), \alpha_{k} x_{i}>-1$ and $\alpha_{k}+\pi_{j} \geq 0$ for all i, j, k ．Set $\beta_{j}=\pi_{j+1}$ ．Let $\mathrm{P}_{\mathcal{C}, n}(\lambda \mid \mu)$ denote
the n－step transition probability for the particle system using the distribution（3）for the jump probability of the particles with inter actions given by（2）．Then，

$$
\mathrm{P}_{\mathcal{C}, n}(\lambda \mid \mu)=\prod_{i=1}^{n}\left(1-\pi_{1} x_{i}\right)(\overrightarrow{\boldsymbol{\alpha}}+\boldsymbol{\pi})^{\lambda / \mu} \underline{G}_{\lambda / \mu}\left(\mathbf{x}_{n} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right),
$$

where $(\overrightarrow{\boldsymbol{\alpha}}+\boldsymbol{\pi})^{\lambda / \mu}:=\prod_{(i, j) \in \lambda / \mu}\left(\alpha_{i-1}+\pi_{j}\right)$ ．（The α_{0} may not be 0 ． Remark 5 Our TASEP at $\beta=0$ is the same model as a special case of［KPS19］（with a shift to fermionic indexing）． We can similarly define a Bernoulli process with the position dependent probability with rates $\left(\rho_{1}, \rho_{2}, \ldots\right)$ by

$$
\begin{equation*}
\mathrm{P}_{\mathcal{B}}\left(w_{j i}=1 \mid G(j, i-1)=m\right):=\frac{\left(\rho_{j}+\beta_{m}\right) x_{i}}{1+\rho_{j} x_{i}} . \tag{4}
\end{equation*}
$$

Theorem 6 （［IMS23］）Suppose $\lambda_{1} \leq \ell, \beta_{k} x_{i} \in(0,1), \rho_{j} x_{i}>-1$ and $\rho_{j}+\beta_{k} \geq 0$ for all i, j, k ．Set $\alpha_{j}=\rho_{j+1}$ ．The n－step transition arobability for the particle esystem using Bernoulli jumps according
to the distribution（4）is given by

$$
\mathrm{P}_{\mathcal{B}, n}(\lambda \mid \mu)=\frac{(\overrightarrow{\boldsymbol{\beta}}+\boldsymbol{\rho})^{\lambda / \mu}}{\prod_{i=1}^{n}\left(1+\rho_{1} x_{i}\right)} G_{\chi^{\prime} / \mu}\left(\mathbf{x}_{n} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right) .
$$

Figure 2：Samples of our process with $\ell=500$ particles after ＝2000 Sa iteps win（left）$\pi=1, x=0.01$ ，and $\alpha=-0.5$ ； （right）$\pi=0.5, \mathrm{x}=2$ and $0=0.5 \sin (\mathrm{k} / 50)^{6}$ ．

4．Noncommutative operators

The Schur operator $\kappa_{i}: \mathbf{k}[\mathcal{P}] \rightarrow \mathbf{k}[\mathcal{P}]$ adds a box to the i－th row of λ if possible and is 0 otherwise．Define the linear operator
$U_{i}:=\kappa_{i}+\Theta_{i}, \quad$ where $\Theta_{i} \cdot \lambda:= \begin{cases}-\alpha_{\lambda_{i}} \lambda & \text { if } \lambda_{i}<\lambda_{i-1}, \\ \beta_{i-1} \lambda & \text { if } \lambda_{i}=\lambda_{i-1},\end{cases}$
Lemma 7 （［IMS24］） $\mathrm{U}=\left\{U_{i}\right\}_{i=1}^{\infty}$ satisfy the weak Knuth relations To relate our TASEP with U ，we use the basis $\left.\{[\alpha, \beta]]_{\lambda \mid}\right\}_{\lambda \in \mathcal{P}}$ of the（dual）fermion Fock space \mathcal{F}^{\dagger} such that $[\alpha, \beta]\langle\mu| e^{H\left(\mathbf{x}_{n}\right)}=$ $\sum_{\lambda} G_{\lambda / \mu}\left(\mathbf{x}_{n} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right) \cdot[\boldsymbol{\alpha}, \beta]\langle\lambda|$ ，where $e^{H\left(\mathbf{x}_{n}\right)}$ is a vertex operator act－ ing on \mathcal{F}^{\dagger} ．Assume $\alpha_{0}=0$ for simplicity．Via the skew Cauchy for－ mula［IMS24，HJKSS24］with particular specializations and com binatorial description［HJKSS24］，we obtain

$$
\begin{equation*}
[\boldsymbol{\alpha}, \beta]_{\langle\mu| e^{H\left(\mathbf{x}_{n}\right)}}=\prod_{i=1}^{n}\left(1-\pi_{1} x_{i}\right)^{-1} \sum_{\lambda \supseteq \mu} \frac{\mathrm{P}_{\mathcal{C}, n}(\lambda \mid \mu)}{(\overrightarrow{\boldsymbol{\alpha}}+\boldsymbol{\pi})^{\lambda / \mu}} \cdot\left[{ }^{[\boldsymbol{\alpha}, \boldsymbol{\beta}]_{\langle\lambda|} .}\right. \tag{6}
\end{equation*}
$$

$\left(\beta_{j}=\pi_{j+1}\right)$ ．We restrict to a single timestep at time i to en code the growth process by U．Since we have a Markov pro－

$$
\begin{equation*}
\mathcal{T}_{\mathcal{C}}:=\sum_{k=0}^{\infty} h_{k}\left(x_{i} \mathbf{U}\right)=\sum_{k=0}^{\infty} x_{i}^{k} h_{k}(\mathbf{U}), \tag{7}
\end{equation*}
$$

where $h_{k}(\mathbf{U})$ is the noncommutative complete symmetric function By some plethystic manipulations as in［IMS23，Sec．4．2］，

$$
[\boldsymbol{\alpha}, \boldsymbol{\beta}]\langle\mu| e^{H\left(x_{i}\right)}=\prod_{j=2}^{\infty}\left(1-\pi_{j} x_{i}\right)^{-1} \cdot[\boldsymbol{\alpha}, \boldsymbol{\beta}]\left\langle\mathcal{T}_{\mathcal{C}} \cdot \mu\right| .
$$

Thus，if we consider the expansion ${ }^{[\alpha, \beta]}\left\langle\mathcal{T}_{\mathcal{C}} \cdot \mu\right|=\sum_{\lambda} B_{\lambda \mu} \cdot\left[{ }^{[\alpha, \beta]}{ }_{\lambda \lambda \mid}\right.$ and matching coefficients in（6），we obtain the one－step transitio probability at time i ：

$$
\mathrm{P}_{\mathcal{C}}(\lambda \mid \mu)=\frac{B_{\lambda \mu}}{(\overrightarrow{\boldsymbol{\alpha}}+\boldsymbol{\pi})^{\lambda / \mu}} \prod_{j=1}^{\infty}\left(1-\pi_{j} x_{i}\right)^{-1} .
$$

We could also prove Theorem 4 by using the combinatorics of hook－valued tableaux as in［IMS23，Sec．5．3］，where the positions the hook－valued tableaux．The key observation is that we have a factor $x_{i}\left(1-\alpha_{k} x_{i}\right)^{-1}$ for every box in the k－th column that would normally contain an i in the set－valued tableaux（over all k ），or where there is no arm．The leg（the column part except for the corner）corresponds to the choice between 1 and $-\pi_{i} x_{j}$ in th numerator of the normalization constant as in［IMS23，Sec．5．3］．

5．One time step example

Example $8 \operatorname{Let} \mu=(1,1), \alpha_{0}=0$ ，and $\pi_{j}=0$ for all $j>3$ ．A
$h_{1}\left(\mathbf{u}_{3}\right)=u_{1}+u_{2}+u_{3}$,
$h_{2}\left(\mathbf{u}_{3}\right)=u_{1}^{2}+u_{1} u_{2}+u_{1} u_{3}+u_{2}^{2}+u_{2} u_{3}+u_{3}^{2}$
$h_{3}\left(\mathbf{u}_{3}\right)=u_{1}^{3}+u_{1}^{2} u_{2}+u_{1}^{2} u_{3}+u_{1} u_{2}^{2}+u_{1} u_{2} u_{3}$
$+u_{1} u_{3}^{2}+u_{2}^{3}+u_{2}^{2} u_{3}+u_{2} u_{3}^{2}+u_{3}^{3}$
we compute
$h_{1}\left(\mathrm{U}_{3}\right) \cdot \mu=\left(-\alpha_{1} \boxminus+\boxplus\right)+\beta_{1}$ 日 + E
$h_{2}\left(\mathrm{U}_{3}\right) \cdot \mu=\left(\alpha_{1}^{2} \mathrm{~B}-\left(\alpha_{1}+\alpha_{2}\right) \boxplus+\square\right)+\beta_{1}\left(-\alpha_{1} \boxminus+\boxplus\right)$
$+\left(-\alpha_{1}\right.$ 日 + 日 $)+$ 阳日 $+\beta_{1}$ 日 $+\beta_{2}$ 日，
$\left.h_{3}\left(\mathrm{U}_{3}\right) \cdot \mu=\left(-\alpha_{1}^{3} \mathrm{G}+h_{2}\left(\alpha_{1}, \alpha_{2}\right) \boxplus-h_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right] \Pi^{2}+\Psi\right)^{2}\right)$
$+\beta_{1}\left(\alpha_{1}^{2} \boxminus-\left(\alpha_{1}+\alpha_{2} \Psi+\amalg\right)+\left(\alpha_{2}^{2} \forall-\left(\alpha_{1}+\alpha_{2}\right) \Psi+母\right)\right.$
$+\beta_{1}^{2}\left(-\alpha_{1} \boxminus+\square\right)+\beta_{1}\left(-\alpha_{1} 日+甘\right)+\beta_{2}\left(-\alpha_{1} \boxminus+\boxminus\right)$
$+\beta_{1}^{3}-+\beta_{1}^{3}+\beta_{1} \beta_{1} \beta^{8}+\beta_{2}^{2}$ ．
Let $A_{k}=-\alpha_{k}=\left\{-\alpha_{1}, \ldots,-\alpha_{k}\right\}$ ．Therefore，we have
${ }^{[\boldsymbol{\alpha}, \boldsymbol{\beta}]}\left\langle\mathcal{T}_{\mathcal{C}} \cdot \mu\right|=\left(1+h_{1}\left(\boldsymbol{\beta}_{1} \sqcup A_{1}\right) x_{i}+h_{2}\left(\boldsymbol{\beta}_{1} \sqcup A_{1}\right) x_{i}^{2}+\cdots\right) .{ }^{[\boldsymbol{\alpha}, \boldsymbol{\beta}]}\langle 1,1]$ $+x_{i}\left(1+h_{1}\left(\boldsymbol{\beta}_{1} \sqcup A_{2}\right) x_{i}+h_{2}\left(\boldsymbol{\beta}_{1} \sqcup A_{2}\right) x_{i}^{2}+\cdots\right) .[\boldsymbol{\alpha}, \boldsymbol{\beta}]\langle 2,1|$ $+x_{i}\left(1+h_{1}\left(\boldsymbol{\beta}_{2} \sqcup A_{1}\right) x_{i}+h_{2}\left(\boldsymbol{\beta}_{2} \sqcup A_{1}\right) x_{i}^{2}+\cdots\right) \cdot[\boldsymbol{\alpha}, \boldsymbol{\beta}]\langle 1,1,1|+$

Using $\beta_{j}=\pi_{j_{+1},},{ }^{[\alpha, \beta]}\left\langle\mathcal{T}_{\mathcal{C}} \cdot \mu\right|$ is simplified as
$\frac{\left(1+\alpha_{1} x_{i}\right)^{-1}}{1-x_{i}} \cdot[\boldsymbol{\alpha}, \beta\}\langle 1,1|+\frac{\left(\alpha_{1} x_{i}+\pi_{1} x_{i}\right)\left(1+\alpha_{1} x_{i}\right)^{-1}\left(1+\alpha_{2} x_{i}\right)^{-1}}{\left.\left(1, \alpha_{, \beta}\right\}_{\langle 2,1}\right), ~}$ $1-\pi_{2} x_{i} \quad \pi_{3} x_{i}\left(1+\alpha_{1} x_{i}\right)^{-1} \quad\left(1-\pi_{2} x_{i}\right)(\overrightarrow{\boldsymbol{\alpha}}+\boldsymbol{\pi})^{(2,1)}$

Seeing coefficients，we obtain the one－step transition probabilitie at time i ：
$\mathrm{P}_{\mathcal{C}}(1,1 \mid \mu)=\frac{\left(1-\pi_{1} x_{i}\right)\left(1-\pi_{3} x_{i}\right)}{\left(1+\alpha_{1} x_{i}\right)}$,
$\mathrm{P}_{\mathcal{C}}(2,1 \mid \mu)=\frac{\left(\alpha_{1} x_{i}+\pi_{1} x_{i}\right)\left(1-\pi_{1} x_{i}\right)\left(1-\pi_{3} x_{i}\right)}{\left(1+\alpha_{1} x_{i}\right)\left(1+\alpha_{2} x_{i}\right)}$,
$\mathrm{P}_{\mathcal{C}}(1,1,1 \mid \mu)=\frac{\pi_{3} x_{i}\left(1-\pi_{1} x_{i}\right)}{\left(1+\alpha_{1} x_{i}\right)}, \quad$ etc．

References

 IMS23］S．Iwao， K ．Motegi，and T ．Scrimshaw．Free fermionic probability theory and K IIMS24］S．I Iwao，K．Motegi，and T．Scrimshaw．Free fermions and canonical Gretendieck IIMS24I S．Imao，K．Kotegi，and T．Scrimshaw．Free
polynomials，Algebr．Comb， $7(1): 245-274$, ， 2024.
［KPS 190 A．Knizel，L．Peerov，and A．Saenz．Generalizations of TASEP in discrete and contin
［Vel17］D．Yeliussizov．Duality and detormations of stable Grothendieck polynomials．J．Alge
braic Combin． $45(1)$ ：295－344，2017．

[^0]: ## 3．TASEP

 We consider additional parameters $\pi=\left(\pi_{1}, \pi_{2}, \ldots\right)$ ．Let $G(j, i)$ be We consider additional parameters $\pi=\left(\pi_{1}, \pi_{2}, \ldots\right.$
 the position of the j－th particle at time i given by
 $G(j, i)=\min \left(G(j, i-1)+w_{j i}, G(j-1, i-1)\right), \quad$ ， $G(0, i-1):=\infty)$ ，where the random variable $w_{i j}$ is determined by the inhomogeneous geometric distribution（which depends on $G(j, i-1)$ ）defined as
 $\mathrm{P}_{\mathcal{G}}\left(w_{j i}=m^{\prime} \mid G(j, i-1)=m\right):=\frac{1-\pi_{j} x_{i}}{1+\alpha_{m+m^{\prime}} x_{i}} \prod_{k=m}^{m+m^{\prime}-1} \frac{\left(\alpha_{k}+\pi_{j}\right) x_{i}}{1+\alpha_{k} x_{i}}$

