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The shape of Bruhat intervals

Björner and Ekedahl pioneered the study of length-
counting sequences associated with (parabolic) lower
Bruhat intervals in crystallographic Coxeter groups
[1]. In this work, we study the asymptotic behavior
of these sequences in affine Weyl groups. Let W =
ZΦ∨⋊Wf be the affine Weyl group with Weyl group
Wf and root system Φ of rank r. Let fW be set of
minimal representatives for the right cosets Wf\W .
Let C+ be the dominant Weyl chamber. Let tλ be
the translation by a dominant coroot lattice element
λ ∈ ZΦ∨∩C+ and fbtλ

i be the number of elements of
length i below tλ in the Bruhat order on fW , which
is the 2i-dimensional Betti number of a (spherical)
Schubert variety in the affine Grassmannian Gr :=
G(F )/G(O), where F = C((t)) and O = C[[t]].
Let K = G(O). We have the Bruhat decomposition

Gr =
⊔

λ∈ZΦ∨∩C+

Grλ where Grλ := KtλK/K.

We regard tλ as a point in G(C [t±1]) ⊂ G(F ). The
corresponding spherical Schubert variety is

Grλ =
⊔

µ∈ZΦ∨∩C+, µ⪯λ

Grµ,

where µ ⪯ λ if and only if λ−µ is a sum of positive
coroots.

Key pieces: P λ, mk, and Sk

Let λ ∈ ZΦ∨∩C+ be a fixed dominant coroot lattice
element. We define the convex polytope

P λ := Conv{wλ | w ∈ Wf} ∩ C+ ⊂ E,

where Conv denotes the convex hull of a set. Let
ht : P λ → R be the height function ht(x) := (2ρ|x),
where ρ is the half-sum of positive roots. We de-
note by Volr the Lebesgue measure on E and by
ht∗Volr the corresponding push-forward measure on
R. Then, the density function of ht∗Volr, which is

g(z) = 1
∥2ρ∥

Volr−1(ht−1(z)), z ∈ R,

evaluates volumes of hyperplane sections of the poly-
tope P λ up to a scalar. Let δz denote the Dirac mea-
sure (that is, point mass) at the point z ∈ R. For
any positive integer k, we define the discrete mea-
sure mk supported on [0, ℓ(tλ)] by

mk := 1
kr

∑
0≤i≤kℓ(tλ)

fbtkλ
i δ i

k
.

Intuitively, mk distributes the sequence (fbtkλ
i )i

evenly on the interval [0, ℓ(tλ)]. We also define the
step function Sk : [0, ℓ(tλ)] → R by

Sk(z) := 1
kr−1

fbtkλ
i , whenever z ∈

[
i

k
,
i + 1

k

)
.

The function Sk records the numbers (fbtkλ
i )i and

behaves like the “density function” of mk.

Our Results

Let Volr(A+) be the volume of the fundamental al-
cove A+.

Main Theorem

The weak convergence of (m1,m2, . . .). The
sequence of measures (mk)k, as k tends to infinity,
converges weakly to the measure 1

Volr(A+)ht∗Volr.
The uniform convergence of (S1, S2, . . .).
The sequence of functions (Sk)k, as k tends to
infinity, converges uniformly to 1

Volr(A+)g.

Let πtλ(q) be the generating polynomial of the se-
quence (fbtλ

i )i, which is the Poincaré polynomial of
the singular cohomology of the spherical Schubert
variety Grλ in the affine Grassmannian. Let µWf

be the set of minimal representatives for the right
cosets Wf,µ\Wf , and Wf,µ is the stabilizer of µ in
Wf .

The dominant lattice formula

πtλ(q) =
∑

µ∈P λ∩ZΦ∨

q(2ρ|µ) ·
∑

w∈µWf

q−ℓ(w)

By the Brunn–Minkowski inequality, we obtain:

Asymptotic log-concavity

The density function g is log-concave. That is,
the sequence (fbtkλ

i )i is asymptotically log-concave
as k tends to infinity.

An example in type C3

Let λ = 3α∨
1 + 6α∨

2 + 7α∨
3 so ht(λ) = 32. For

convenience, we define (a, b, c)Φ := aα∨
1 +bα∨

2 +cα∨
3 .

The polytope P λ has vertices
{(0, 0, 0)Φ, (3, 3, 3)Φ, (3, 5, 7)Φ,

(3, 6, 6)Φ, (7/3, 14/3, 7)Φ, (3, 6, 7)Φ},

which is an example of a non-lattice polytope. Since
ρ = (3, 5, 3)Φ, we get ∥ρ∥ =

√
14. By direct compu-

tations, we have Vol3(A+) = 1/48. The only missing
ingredient to compute the limit function is to deter-
mine Vol2(ht−1(z)). By the theory of convex poly-
topes, this function is a piece-wise quadratic poly-
nomial.
We can use the “uniform convergence” to give quick
estimates of the terms in the sequence (fbtkλ

i )i when k
is big. For instance, when k = 8, the value of fbt8λ

196 is
virtually impossible to obtain in a computer directly
from definitions. Let us take z = 24.5(= 196/8). By
our theorem, we have

S8(24.5) = 1
82

fbt8λ
196 ∼ 48g(24.5) = 389

30
,

which gives fbt8λ
196 ∼ 829.87.

On the other hand, the “dominant lattice formula”
gives the exact values of the terms in the sequence
(fbtkλ

i )i. In particular, we have fbt8λ
196 = 863. Our

quick estimate of 829.87 was off by 3.84%.

Connection with Ehrhart’s theory

For an r-dimensional lattice polytope P (that is, all
vertices of P are points of a given lattice L), the
Ehrhart polynomial [2] E(P, k) is a polynomial
in k that counts the number of lattice points in the
k-fold dilation kP of P .

The leading coefficient is equal to the r-dimensional
volume Volr(P ) of P , divided by the volume d(L)
of the fundamental region of the lattice L.

Question

For k sufficiently large, is the total Betti number
Card

(
f [e, tkλ]

)
=
∑

i

fbtkλ
i

a quasi-polynomial in k of degree r, with Volr(P λ)
Volr(A+)

as the leading coefficient?

Question

Is fbtkλ

ki a quasi-polynomial in k of degree (r − 1)
for k sufficiently large, with

Volr−1(ht−1(i))
Volr(A+) · ∥2ρ∥

as the leading coefficient?
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