The shape of Bruhat intervals

Bjorner and Ekedahl pioneered the study of length-
counting sequences associated with (parabolic) lower
Bruhat intervals in crystallographic Coxeter groups

1|. In this work, we study the asymptotic behavior
of these sequences in afline Weyl groups. Let W =
7.9Y x W be the affine Weyl group with Weyl group
W and root system ® of rank r. Let IW be set of
minimal representatives for the right cosets W\ W.
Let C, be the dominant Weyl chamber. Let ¢ be
the translation by a dominant coroot lattice element
A€ ZdVNC, and / b? be the number of elements of
length i below ¢ in the Bruhat order on /W which
is the 2¢-dimensional Betti number of a (spherical)
Schubert variety in the affine Grassmannian gr =
G(F)/G(O), where ' = C((t)) and O = Cl||t]].
Let K = G(O). We have the Bruhat decomposition
gr = LI Gr, where Gr, = KtAK/K.
A\EZDPVNC.
We regard t* as a point in G(C[tF1]) € G(F). The
corresponding spherical Schubert variety is
gry = || Gr,,,
HEZDPVNC L, 1=\

where ¢ < A\ if and only if A — p is a sum of positive
COroots.

Key pieces: P*, m;, and S}

Let A € Z®VNC', be a fixed dominant coroot lattice
element. We define the convex polytope

P* .= Convi{w\ |w e W;}NC, C E,

where Conv denotes the convex hull of a set. Let
ht: P* — R be the height function ht(x) := (2p|x),
where p is the half-sum of positive roots. We de-
note by Vol, the Lebesgue measure on £ and by
ht, Vol, the corresponding push-forward measure on
R. Then, the density function of ht,Vol,, which is

1 .
2 Vol,_1(ht™'(2)),

evaluates volumes of hyperplane sections of the poly-

g(z):‘ z € R,

tope P up to a scalar. Let &, denote the Dirac mea-
sure (that is, point mass) at the point z € R. For
any positive integer £, we define the discrete mea-
sure my, supported on |0, £(ty)| by

Gaston Burrull, Tao Gui, and Hongsheng Hu

1
- Fpteas.
my = E b0

Ogigkg(t)\)

[ntuitively, my, distributes the sequence (7b/),
evenly on the interval |0, £(t)]. We also define the
step function Sg: [0, £(t))] — R by

1 KR!
Ffbf’“, whenever z € _;, Z; ) .
The function Sy, records the numbers (76/*); and

behaves like the “density function” of m;.

Sk(z) L=

Our Results

Let Vol,(A,) be the volume of the fundamental al-
cove A,

Main Theorem

The weak convergence of (my, my,...). The

sequence of measures (myg ), as k tends to infinity,

1
Vol A+)ht*VolT.

The uniform convergence of (57, 5,...).

The sequence of functions (Sg)r, as k tends to

infinity, converges uniformly to o % 179

converges weakly to the measure

Let m(q) be the generating polynomial of the se-
quence (Yb);, which is the Poincaré polynomial of
the singular cohomology of the spherical Schubert
variety Gry in the affine Grassmannian. Let #WV/;
be the set of minimal representatives for the right
cosets Wr \W¢, and Wy, is the stabilizer of p in

By the Brunn—Minkowski inequality, we obtain:
Asymptotic log-concavity

The density function g is log-concave. That is,

the sequence (b/"); is asymptotically log-concave
as k tends to infinity.

An example in type Cj

Let A = 3ay 4+ 6ay + Tay so ht(A) = 32. For
convenience, we define (a, b, ¢)o == aay +bay +cay.
The polytope P has vertices

{(0,0,0)q,(3,3,3)s, (3,5, 7,
(3,6,6),(7/3,14/3,7)s, (3,6, 7)e},
which is an example of a non-lattice polytope. Since
p = (3,5,3)s, we get ||p|| = v/14. By direct compu-
tations, we have Vol3(A,) = 1/48. The only missing

ingredient to compute the limit function is to deter-
mine Volo(ht™*(z)). By the theory of convex poly-

topes, this function is a piece-wise quadratic poly-
nomial.

We can use the “uniform convergence” to give quick
estimates of the terms in the sequence (Y6*); when k
is big. For instance, when k = 8, the value of /b’ is
virtually impossible to obtain in a computer directly
from definitions. Let us take z = 24.5(= 196/8). By

our theorem, we have

1 389
S4(24.5) = @f b ~ 48¢(24.5) = =
which gives 705 ~ 829.87.
On the other hand, the “dominant lattice formula”
oives the exact values of the terms in the sequence

(/p!);. In particular, we have /0% = 863. Our

quick estimate of 829.87 was off by 3.84%.

Connection with Ehrhart’s theory

For an r-dimensional lattice polytope P (that is, all
vertices of P are points of a given lattice L), the
Ehrhart polynomial 2] E(P, k) is a polynomial
in k that counts the number of lattice points in the

k-tfold dilation kP of P.

Asymptotic log-concavity of dominant lower Bruhat intervals

The leading coefficient is equal to the r-dimensional
volume Vol,.(P) of P, divided by the volume d(L)

of the fundamental region of the lattice L.

For k sufficiently large, is the total Betti number
Card (f[e, tk)\]) — Z fbg“

a quasi-polynomial in k of degree r, with
as the leading coefficient?

Vol,.(P?)
Vol,.(A})

Is /b0 a quasi-polynomial in k of degree (r — 1)
for k sufficiently large, with

Vol,_1(ht™'(4))

Vol (A+) - [[2p]

as the leading coefficient?
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