The shape of Bruhat intervals

Björner and Ekedahl pioneered the study of lengthcounting sequences associated with (parabolic) lower Bruhat intervals in crystallographic Coxeter groups [1]. In this work, we study the asymptotic behavior of these sequences in affine Weyl groups. Let W =

 $\mathbb{Z}\Phi^{\vee} \rtimes W_f$ be the affine Weyl group with Weyl group W_f and root system Φ of rank r. Let fW be set of minimal representatives for the right cosets $W_f \setminus W$. Let C_+ be the dominant Weyl chamber. Let t_{λ} be the translation by a dominant coroot lattice element $\lambda \in \mathbb{Z}\Phi^{\vee} \cap \overline{C_+}$ and ${}^f b_i^{t_{\lambda}}$ be the number of elements of length i below t_{λ} in the Bruhat order on ${}^{f}W$, which is the 2*i*-dimensional Betti number of a (spherical) Schubert variety in the affine Grassmannian $\mathcal{G}r :=$ $G(F)/G(\mathcal{O})$, where $F = \mathbb{C}((t))$ and $\mathcal{O} = \mathbb{C}[[t]]$. Let $K = G(\mathcal{O})$. We have the Bruhat decomposition

$$\mathcal{G}r = \bigsqcup_{\lambda \in \mathbb{Z}\Phi^{\vee} \cap \overline{C_+}} \mathcal{G}r_{\lambda}$$
 where $\mathcal{G}r_{\lambda} := Kt^{\lambda}K/K$.

We regard t^{λ} as a point in $G(\mathbb{C}[t^{\pm 1}]) \subset G(F)$. The corresponding **spherical Schubert variety** is

$$\overline{\mathcal{G}r_{\lambda}} = \bigsqcup_{\mu \in \mathbb{Z}\Phi^{\vee} \cap \overline{C_{+}}, \ \mu \preceq \lambda} \mathcal{G}r_{\mu},$$

where $\mu \preceq \lambda$ if and only if $\lambda - \mu$ is a sum of positive coroots.

Key pieces: P^{λ} , \mathfrak{m}_k , and S_k

Let $\lambda \in \mathbb{Z}\Phi^{\vee} \cap \overline{C_+}$ be a fixed dominant coroot lattice element. We define the convex polytope

 $P^{\lambda} := \operatorname{Conv}\{w\lambda \mid w \in W_f\} \cap \overline{C_+} \subset E,$

where Conv denotes the convex hull of a set. Let ht: $P^{\lambda} \to \mathbb{R}$ be the height function $ht(x) := (2\rho|x)$, where ρ is the half-sum of positive roots. We denote by Vol_r the Lebesgue measure on E and by ht_*Vol_r the corresponding push-forward measure on \mathbb{R} . Then, the density function of ht_*Vol_r , which is

$$g(z) = \frac{1}{\|2\rho\|} \operatorname{Vol}_{r-1}(\operatorname{ht}^{-1}(z)), \quad z \in \mathbb{R},$$

evaluates volumes of hyperplane sections of the polytope P^{λ} up to a scalar. Let δ_z denote the Dirac measure (that is, point mass) at the point $z \in \mathbb{R}$. For any positive integer k, we define the discrete measure \mathfrak{m}_k supported on $[0, \ell(t_\lambda)]$ by

Asymptotic log-concavity of dominant lower Bruhat intervals

Gaston Burrull, Tao Gui, and Hongsheng Hu

$$\mathfrak{m}_k := \frac{1}{k^r} \sum_{0 \le i \le k\ell(t_\lambda)} {}^f b_i^{t_{k\lambda}} \delta_{\frac{i}{k}}.$$

Intuitively, \mathbf{m}_k distributes the sequence $({}^f b_i^{t_{k\lambda}})_i$ evenly on the interval $[0, \ell(t_{\lambda})]$. We also define the step function $S_k \colon [0, \ell(t_\lambda)] \to \mathbb{R}$ by

$$S_k(z) := \frac{1}{k^{r-1}} {}^f b_i^{t_{k\lambda}}, \text{ whenever } z \in \left[\frac{i}{k}, \frac{i+1}{k}\right)$$

The function S_k records the numbers $({}^f b_i^{t_{k\lambda}})_i$ and behaves like the "density function" of \mathfrak{m}_k .

Our Results

Let $\operatorname{Vol}_r(A_+)$ be the volume of the fundamental alcove A_+ .

Main Theorem

The weak convergence of $(\mathfrak{m}_1, \mathfrak{m}_2, \ldots)$. The sequence of measures $(\mathfrak{m}_k)_k$, as k tends to infinity, converges weakly to the measure $\frac{1}{\operatorname{Vol}_r(A_{\perp})}$ ht_{*}Vol_r. The uniform convergence of $(S_1, S_2, ...)$. The sequence of functions $(S_k)_k$, as k tends to infinity, converges uniformly to $\frac{1}{\operatorname{Vol}_r(A_+)}g$.

Let $\pi^{t_{\lambda}}(q)$ be the generating polynomial of the sequence $({}^{f}b_{i}^{t_{\lambda}})_{i}$, which is the Poincaré polynomial of the singular cohomology of the spherical Schubert variety $\overline{\mathcal{G}r_{\lambda}}$ in the affine Grassmannian. Let ${}^{\mu}W_{f}$ be the set of minimal representatives for the right cosets $W_{f,\mu} \setminus W_f$, and $W_{f,\mu}$ is the stabilizer of μ in W_{f} .

The dominant lattice formula
$$\pi^{t_{\lambda}}(q) = \sum_{\mu \in P^{\lambda} \cap \mathbb{Z}\Phi^{\vee}} q^{(2\rho|\mu)} \cdot \sum_{w \in {}^{\mu}W_{f}} q^{-\ell(w)}$$

By the Brunn–Minkowski inequality, we obtain:

Asymptotic log-concavity

The density function g is log-concave. That is, the sequence $({}^{f}b_{i}^{t_{k\lambda}})_{i}$ is asymptotically log-concave as k tends to infinity.

which is an example of a non-lattice polytope. Since $\rho = (3, 5, 3)_{\Phi}$, we get $\|\rho\| = \sqrt{14}$. By direct computations, we have $Vol_3(A_+) = 1/48$. The only missing ingredient to compute the limit function is to determine $\operatorname{Vol}_2(\operatorname{ht}^{-1}(z))$. By the theory of convex polytopes, this function is a piece-wise quadratic polynomial. We can use the "uniform convergence" to give quick estimates of the terms in the sequence $({}^{f}b_{i}^{t_{k\lambda}})_{i}$ when k is big. For instance, when k = 8, the value of ${}^{f}b_{196}^{t_{8\lambda}}$ is virtually impossible to obtain in a computer directly from definitions. Let us take z = 24.5 (= 196/8). By our theorem, we have

On the other hand, the "dominant lattice formula" gives the exact values of the terms in the sequence $({}^{f}b_{i}^{t_{k\lambda}})_{i}$. In particular, we have ${}^{f}b_{196}^{t_{8\lambda}} = 863$. Our quick estimate of 829.87 was off by 3.84%.

Connection with Ehrhart's theory

Let $\lambda = 3\alpha_1^{\vee} + 6\alpha_2^{\vee} + 7\alpha_3^{\vee}$ so $ht(\lambda) = 32$. For convenience, we define $(a, b, c)_{\Phi} := a\alpha_1^{\vee} + b\alpha_2^{\vee} + c\alpha_3^{\vee}$. The polytope P^{λ} has vertices

> $\{(0,0,0)_{\Phi},(3,3,3)_{\Phi},(3,5,7)_{\Phi},$ $(3, 6, 6)_{\Phi}, (7/3, 14/3, 7)_{\Phi}, (3, 6, 7)_{\Phi}\},\$

$$S_8(24.5) = \frac{1}{8^2} {}^f b_{196}^{t_{8\lambda}} \sim 48g(24.5) = \frac{389}{30},$$

which gives ${}^{J}b_{196}^{t_{8\lambda}} \sim 829.87$.

For an r-dimensional lattice polytope P (that is, all vertices of P are points of a given lattice L), the Ehrhart polynomial [2] E(P, k) is a polynomial in k that counts the number of lattice points in the k-fold dilation kP of P.

volume of the
For k
1 01 7
a qua as th
Is ${}^{f}b_{f}^{t}$ for k
as th

The authors thank Anthony Henderson, David Plaza, Alex Weekes, Ge Xiong, and Xinwen Zhu for their valuable comments.

The leading coefficient is equal to the r-dimensional ne $\operatorname{Vol}_r(P)$ of P, divided by the volume d(L)fundamental region of the lattice L.

Question

k sufficiently large, is the total Betti number Card $\begin{pmatrix} f[e, t_{k\lambda}] \end{pmatrix} = \sum_{i} f b_i^{t_{k\lambda}}$

asi-polynomial in k of degree r, with $\frac{\operatorname{Vol}_r(P^{\lambda})}{\operatorname{Vol}_r(A_{\perp})}$ ne leading coefficient?

Question

 $b_{ki}^{t_{k\lambda}}$ a quasi-polynomial in k of degree (r-1)sufficiently large, with $\operatorname{Vol}_{r-1}(\operatorname{ht}^{-1}(i))$ $\operatorname{Vol}_r(A_+) \cdot \|2\rho\|$ ne leading coefficient?

References

[1] Anders Björner and Torsten Ekedahl. On the shape of Bruhat intervals. Ann. of Math. (2), 170(2):799–817, 2009. [2] Eugene Ehrhart. Sur les polyèdres rationnels homothétiques à n dimensions.

CR Acad. Sci. Paris, 254:616, 1962.

Acknowledgements

Contact Information

gaston(at)bicmr(dot)pku(dot)edu(dot)cn guitao(at)amss(dot)ac(dot)cn huhongsheng(at)amss(dot)ac(dot)cn

