

A Whitney polynomial for hypermaps

Robert Cori¹, Gábor Hetyei²

¹Labri, Université Bordeaux 1, 33405 Talence Cedex, France

²Department of Mathematics and Statistics, UNC-Charlotte, Charlotte NC 28223-0001

Hypermaps and their Whitney polynomial

A collection of hypermaps is a pair of permutations (σ, α) acting on the same finite set of labels. The orbits of this action are the connected components, we denote their number by $\kappa(\sigma, \alpha)$. We call (σ, α) a hypermap if $\kappa(\sigma, \alpha) = 1$. Fig. 1 represents the hypermap (σ, α) for $\sigma = (1,4)(2,5)(3)$ and $\alpha = (1,2,3)(4,5)$. The cycles of σ are the vertices, the cycles of α are the hyperedges and the cycles of $\alpha^{-1}\sigma = (1,5)(2,4,3)$ are the faces. A We still have the following generalized duality result. **Theorem** A collection of hypermaps (σ, α) of genus zero and its dual collection $(\alpha^{-1}\sigma, \alpha^{-1})$ satisfy $R(\sigma, \alpha; u, v) =$ $R(\alpha^{-1}\sigma, \alpha^{-1}; v, u)$.

Medial maps

Definition Let (σ, α) be a collection of hypermaps on the set of points {1, 2, ..., n}. We define its *medial map* M(σ, α) as the following map (σ', α') on {1⁻, 1⁺, 2⁻, 2⁺, ..., n⁻, n⁺}:
the cycles of σ' are all cycles of the form (i₁⁻, i₁⁺, i₂⁻, i₂⁺, ..., i_k⁻, i_k⁺) where (i₁, i₂, ..., i_k) is a cycle of α;

We cut the hyperedges connecting positive points of the medial map to negative points. We assume that the infinite outer face is a sea, and its water flows in along the cuts:

hypermap is a *map* if the length of each cycle in α is at most 2.

Figure 1: The hypermap (σ, α)

The Whitney polynomial $R(\sigma, \alpha; u, v)$ of a collection of hypermaps (σ, α) on a set of n points is defined by the formula

$$\mathsf{R}(\sigma, \alpha; \mathfrak{u}, \nu) = \sum_{\beta \leq \alpha} \mathfrak{u}^{\kappa(\sigma, \beta) - \kappa(\sigma, \alpha)} \cdot \nu^{\kappa(\sigma, \beta) + \mathfrak{n} - z(\beta) - z(\sigma)}$$

Here the summation is over all permutations β refining α , and $z(\pi)$ denotes the number of cycles of π . For maps we recover the usual definition of the Whitney polynomial of the underlying graph.

General properties of the Whitney polynomial

- 2 the cycles of α' are all cycles of the form
- $(i^+, \sigma(i)^-).$

We obtain a collection of maps (σ', α') which has an *underlying Eulerian digraph* obtained by directing each edge (i^+, j^-) as $i^+ \rightarrow j^-$.

Figure 2: A planar hypermap and its medial map

Proposition Every directed Eulerian graph arises as the directed medial graph of a collection of hypermaps.A noncrossing Eulerian state is a partitioning of the edges of the underlying directed medial graph into closed paths in such a way that these paths do not cross at any

Figure 3: Wet coastlines after a few cuts

Theorem Given a planar hypermap (σ, α) , we may visually compute its Whitney polynomial by making its model in paper, and performing the above cutting procedure in all possible ways and associating to each outcome \mathfrak{u} raised to the power of the wet coastlines and ν raised to the power of the dry faces. The sum of all weights is $\mathfrak{u} \cdot R(\sigma, \alpha; \mathfrak{u}, \nu)$.

The characteristic polynomial and the flow polynomial

Proposition Let α be a permutation of $\{1, 2, ..., n\}$ with k cycles of lengths $c_1, ..., c_k$. Then the partially ordered set of all refinements of α is the direct product $[id, \alpha] = \prod_{i=1}^k NC(c_i)$. Here id is the identity permutation and $NC(c_i)$ is the lattice of noncrossing partitions on c_i elements.

We define the *characteristic polynomial* $\chi(\sigma, \alpha; t)$ by

Assume $H = (\sigma, \alpha)$ is a collection of hypermaps and (1, 2, ..., m) is a cycle of α for some $m \ge 2$. Then we have the following "deletion-contraction rule":

 $R(H; u, v) = \sum_{k=1}^{m} R(\phi_k(H); u, v) \cdot w_k,$

Here $\phi_k(H) = (\sigma, (1, k)\alpha(1, k - 1))$ and $w_k = u^{\kappa(\phi_k(H))-\kappa(H)}\nu$ if $k \neq 1$ but 1 and k belong to the same cycle of σ , and $\phi_k(H) = ((1, k)\sigma, (1, k)\alpha(1, k - 1))$ and $w_k = u^{\kappa(\phi_k(H))-\kappa(H)}$ in all other cases. Note that each w_k is a monomial from the set $\{1, u, \nu, u\nu\}$. Noteworthy specializations of the Whitney polynomial include:

- $R(\sigma, \alpha; 0, 0)$ is the number of spanning hyperforests of (σ, α) .
- 2 $R(\sigma, \alpha; 0, 1)$ is the number of spanning collections of hypermaps of (σ, α) .

The Tutte polynomial T(G; x, y) of a graph (map) G is given by T(G; x, y) = R(G; x - 1, y - 1). Extending this definition to collections of hypermaps the obvious way does not seem to be a good idea: of the vertices. The noncrossing circuit partition polynomial of an Eulerian map (σ, α) as $j((\sigma, \alpha); x) = \sum_{k\geq 0} f_k(\sigma, \alpha) x^k$. Here $f_k(\sigma, \alpha)$ is the number of non-crossing Eulerian states with k cycles.

The following result generalizes Ellis-Monaghan's generalization of Martin's formula [1, Eq. (15)] from planar maps to hypermaps.

Theorem Let (σ, α) be a genus zero collection of hypermaps and $M(\sigma, \alpha)$ the collection of its medial maps. Then $j(M(\sigma, \alpha); x) = x^{\kappa(\sigma, \alpha)} R(\sigma, \alpha; x, x)$ holds.

A visual computation of $R(\sigma, \alpha; u, v)$ in the planar case

Given a planar hypermap, we may shrink the edges of its medial map to its outline:

$$\chi(\sigma, \alpha; t) = \sum_{\beta \leq \alpha} \mu(\mathrm{id}, \beta) \cdot t^{\kappa(\sigma, \beta) - \kappa(\sigma, \alpha)}.$$

Theorem Assume that each cycle of α has length at most 3. Then for any positive integer t, the number $t^{\kappa(\sigma,\alpha)} \cdot \chi(\sigma,\alpha,t)$ is the number of ways to t-color the vertices of (σ,α) in such a way that no two vertices of the same color are incident to the same cycle of α . We define the flow polynomial $C(\sigma,\alpha;t)$ of (σ,α) by

$$C(\sigma, \alpha; t) = \sum_{\beta \leq \alpha} \mu(\beta, \alpha) t^{n + \kappa(\sigma, \beta) - z(\beta) - z(\sigma)}.$$

Following Cori and Machì [2] we define a *flow* on a (σ, α) as a function $f : \{1, 2, ..., n\} \to K$ for some field K such that the set C of points of any cycle of σ or α satisfies $\sum_{i \in C} f(i) = 0.$

Theorem Let K be a finite field with q elements and assume that each cycle of α has at most three elements. Then $C(\sigma, \alpha; q)$ is the number of nowhere zero flows $f: \{1, 2, ..., n\} \rightarrow K$ on (σ, α) .

References

Example For $\sigma = (1)(2) \cdots (n)$ and $\alpha = (1, 2, \dots, n)$ the polynomial $R(\sigma, \alpha; u, v)$ is a *Narayana polynomial* of u For n = 2 we have $R(\sigma, \alpha; u, v) = 1 + u$, but for n = 3 we get $R(\sigma, \alpha; u, v) = u^2 + 3u + 1$: substituting u = x - 1 yields $x^2 + x - 1$. I] J. A. Ellis-Monaghan, Identities for circuit partition polynomials, with applications to the Tutte polynomial, Special issue on the Tutte polynomial, *Adv. in Appl. Math.* **32** (2004), 188–197.

[2] R. Cori and A. Machì, Flows on hypermaps, *Glasgow Math. J.* **30** (1988), 17–29.

FPSAC 2024, July 22 – 26, 2024, Bochum (Germany)