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1. Introduction

Motivation [Kwon 11, Naito-Sagaki 12| (g = ag, be, €on, 000)
Extremal weight crystal For a nonnegative level X € P, there exist A\ € £ and A* € P™ such that

. V()\) ()\ c P) . extremal Welght module B()\) ~ B()\O) ® B()\_I_)
= U,(g)-module generated by an extremal weight vector v, B
Remark When A € P™, V() is a highest weight module.

Goal| 1. Define an extremal weight crystal structure on combinatorial models;

- B(\) : crystal base of V() |[Kashiwara 94] — gpinor model — goo-type Kashiwara-Nakashima tableaux
= local basis of V(A) at ¢ =0

- |t contains combinatorial data of underlying modules.

- There are many well-known combinatorial models to describe B(\)

2. Describe the algebraic structure of the Grothendieck ring related
to extremal weight crystals (using tensor product decompositions)

x To illustrate explicitly, we describe only the case for type C' from now on.

2. Notations 3.1. Spinor model

- @ = g : afline Lie algebras of infinite rank Spinor model [Kwon 15, Kwon 16] (), ¢) € 2(G) . |
xample 111
0 | 2 T9(a) = n qa
(o : O >> e 0O . T9(a) u”>0 SST((2",1%)) (a = 0) 1)1 2
- T9(A\, ) : subset of T9(\y) x --- x T9(\1) satisfying 112 % 3
[ =7, : index set (nonnegative integers) the admissibility condition 213 4 4
{a; |4 € I} @ simple roots I8N 0) =AY, + -+ AS e P “(-Tg, TQ,. T1) S Tg((S, 1, ()),3) .....

ex) g = —261, ; = €, —€;41 (Z = 1)
i Thm [Kwon 15, Kwon 16] For (), /) € Z(G),

{A7 |i€ I} : fundamental weights T9(\, ¢) is a g-crystal and is isomorphic to B(II%(\,/¢)), i.e.,
ex) A) =Ag+(e1+-+¢) (i=1)

¢

T9(\, () =~ B(II*(\,0)).

Q0O
P = ZAS D E|—> Ze; . weight lattice
i=1

3.2. go-type Kashiwara-Nakashima tableaux

P : dominant weight
OIUHAHL WEISHLS go-type KN tableaux [Lecouvey 09] Ae P Example A = (3,3,2,1)

LI — ... 3 <9< . e ~ — 1=
J8={---<3<2<1l<l1<2<3<---} 51511 A [5]5]1
- KIN?()\) : subset of SST(A\) whose letters are in J9 57 1171
. P : the set of partitions satistying some configuration conditions 113 113
— £(\) : the length of A € P cwy = Mer 4 -+ g €E (t=10(N) 2 2

PG = (M) ePxN]| LN <L)

Thm [H. 23] For A € P, KN?()\) is a g-crystal and is isomorphic to B(w)), i.e.,
- SST(N) : the set of semistandard tableaux of

shape A € P KINY(\)

'

B(ZE)\)

4. The Grothendieck ring

- K : Grothendieck ring of € (a category of extremal weight g.,-crystals), %= {zr|k €N} commuting formal variables
i.e., an additive group generated by isomorphism classes |B| for B € C  Let A — Z A, where Ay = Z[h], A, = Aolz1,...,2n] (n = 1)
Prop [Kwon 11, H. 23] X is an associative Z-algebra. n>0

~» A is an algebra under the following inductively-defined multiplication:
— Ao = Z||h]| : usual multiplication
— Suppose the multiplication on A,,_; is well-defined.
For a € A, _1, define az, = z,a + d,,(a) with a derivation 9,, on A,,_4

- XY : the subalgebra of X generated by [B(\)] (A € E)
Prop [Lecouvey 09] There is an algebra isomorphism between K and the
ring Sym of symmetric functions.

WK Sy, (B o =0 (<k<n-1
. Kt : subalgebra of X generated by [B(\)] (A€ P,) 3 nominten
Prop [H. 23] There is an algebra isomorphism between X' and the ring On(ha) = Z Z Zihatn-i-2j (a€Zs)
Z[[h] of formal power series in commuting variables h = {h; |k € Z}. \ =0 =0
Ut Kt Z[h],  [BIE(A, )] — HE(A, 0) Thm [H. 23] There is an isomorphism of Z-algebras.
Remark X = K" ® X' (as vector spaces) VX —A [Bl@way)] =z [BAI))] — by
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