Extremal weight crystals over affine Lie algebras of infinite rank

Taehyeok Heo[†] Seoul National University

gjxogur123@snu.ac.kr

1. Introduction

Extremal weight crystal

- $\cdot V(\lambda) \ (\lambda \in P)$: extremal weight module
- = $U_q(\mathfrak{g})$ -module generated by an extremal weight vector v_{λ} Remark When $\lambda \in P^+$, $V(\lambda)$ is a highest weight module.
- $\cdot B(\lambda)$: crystal base of $V(\lambda)$ [Kashiwara 94]
- = local basis of $V(\lambda)$ at q=0
- It contains combinatorial data of underlying modules.
- There are many well-known combinatorial models to describe $B(\lambda)$

Motivation [Kwon 11, Naito-Sagaki 12] $(\mathfrak{g} = \mathfrak{a}_{\infty}, \mathfrak{b}_{\infty}, \mathfrak{c}_{\infty}, \mathfrak{d}_{\infty})$ For a nonnegative level $\lambda \in P$, there exist $\lambda^0 \in E$ and $\lambda^+ \in P^+$ such that

$$B(\lambda) \cong B(\lambda^0) \otimes B(\lambda^+)$$

Goal

- 1. Define an extremal weight crystal structure on combinatorial models;
- spinor model $-\mathfrak{g}_{\infty}$ -type Kashiwara-Nakashima tableaux
- 2. Describe the algebraic structure of the Grothendieck ring related to extremal weight crystals (using tensor product decompositions)

* To illustrate explicitly, we describe only the case for type C from now on.

2. Notations

 $\cdot \mathfrak{g} = \mathfrak{g}_{\infty}$: affine Lie algebras of infinite rank

$$\mathfrak{c}_{\infty}$$
 : $0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$

- $I = \mathbb{Z}_+$: index set (nonnegative integers)
- $\{\alpha_i \mid i \in I\}$: simple roots ex) $\alpha_0 = -2\epsilon_1$, $\alpha_i = \epsilon_i - \epsilon_{i+1}$ $(i \ge 1)$
- $\{\Lambda_i^{\mathfrak{g}} | i \in I\}$: fundamental weights ex) $\Lambda_i^{\mathfrak{g}} = \Lambda_0^{\mathfrak{g}} + (\epsilon_1 + \dots + \epsilon_i) \ (i \geqslant 1)$
- $P = \mathbb{Z}\Lambda_0^{\mathfrak{g}} \oplus \bigoplus_{i=1}^{\infty} \mathbb{Z}\epsilon_i$: weight lattice
- P^+ : dominant weights

•
$$E = \bigoplus_{i=1}^{\infty} \mathbb{Z} \epsilon_i \subseteq P$$

- $\cdot \mathcal{P}$: the set of partitions
- $-\ell(\lambda)$: the length of $\lambda \in \mathcal{P}$
- $\mathscr{P}(G) = \{ (\lambda, \ell) \in \mathcal{P} \times \mathbb{N} \mid \ell(\lambda) \leqslant \ell \}$
- \cdot $SST(\lambda)$: the set of semistandard tableaux of shape $\lambda \in \mathcal{P}$

3.1. Spinor model

Spinor model [Kwon 15, Kwon 16] $(\lambda, \ell) \in \mathscr{P}(G)$

- $\cdot \mathbf{T}^{\mathfrak{g}}(a) = \bigsqcup_{n \geqslant 0} SST((2^n, 1^a)) \ (a \geqslant 0)$
- \cdot $\mathbf{T}^{\mathfrak{g}}(\lambda,\ell)$: subset of $\mathbf{T}^{\mathfrak{g}}(\lambda_{\ell}) \times \cdots \times \mathbf{T}^{\mathfrak{g}}(\lambda_{1})$ satisfying the admissibility condition
- $\cdot \Pi^{\mathfrak{g}}(\lambda,\ell) = \Lambda^{\mathfrak{g}}_{\lambda_1} + \dots + \Lambda^{\mathfrak{g}}_{\lambda_\ell} \in P^+$

Thm [Kwon 15, Kwon 16] For $(\lambda, \ell) \in \mathscr{P}(G)$, $\mathbf{T}^{\mathfrak{g}}(\lambda, \ell)$ is a \mathfrak{g} -crystal and is isomorphic to $B(\Pi^{\mathfrak{g}}(\lambda, \ell))$, i.e.,

$$\mathbf{T}^{\mathfrak{g}}(\lambda,\ell) \cong B(\Pi^{\mathfrak{g}}(\lambda,\ell)).$$

3.2. \mathfrak{g}_{∞} -type Kashiwara-Nakashima tableaux

 \mathfrak{g}_{∞} -type KN tableaux [Lecouvey 09] $\lambda \in \mathfrak{P}$

$$\cdot \mathfrak{I}^{\mathfrak{g}} = \{ \dots < \overline{3} < \overline{2} < \overline{1} < 1 < 2 < 3 < \dots \}$$

- \cdot $\mathbf{KN}^{\mathfrak{g}}(\lambda)$: subset of $SST(\lambda)$ whose letters are in $\mathbb{J}^{\mathfrak{g}}$ satisfying some $configuration\ conditions$
- $\omega_{\lambda} = \lambda_1 \epsilon_1 + \cdots + \lambda_t \epsilon_t \in E \quad (t = \ell(\lambda))$

Example $\lambda = (3, 3, 2, 1)$

Thm [H. 23] For $\lambda \in \mathcal{P}$, $\mathbf{KN}^{\mathfrak{g}}(\lambda)$ is a \mathfrak{g} -crystal and is isomorphic to $B(\varpi_{\lambda})$, i.e.,

$$\mathbf{KN}^{\mathfrak{g}}(\lambda) \cong B(\varpi_{\lambda}).$$

4. The Grothendieck ring

- \cdot \mathcal{K} : Grothendieck ring of \mathcal{C} (a category of extremal weight \mathfrak{g}_{∞} -crystals), i.e., an additive group generated by isomorphism classes [B] for $B \in \mathcal{C}$ Prop [Kwon 11, H. 23] \mathcal{K} is an associative \mathbb{Z} -algebra.
- · \mathcal{K}^0 : the subalgebra of \mathcal{K} generated by $[B(\lambda)]$ ($\lambda \in E$)

 Prop [Lecouvey 09] There is an algebra isomorphism between \mathcal{K}^0 and the ring Sym of symmetric functions.

$$\Psi^0: \mathcal{K}^0 \to \operatorname{Sym}, \quad [B(\varpi_{\lambda})] \mapsto s_{\lambda}$$

· \mathcal{K}^+ : subalgebra of \mathcal{K} generated by $[B(\lambda)]$ ($\lambda \in P_{\mathrm{int}}^+$)

Prop [H. 23] There is an algebra isomorphism between \mathcal{K}^+ and the ring $\mathbb{Z}[\![\mathbf{h}]\!]$ of formal power series in commuting variables $\mathbf{h} = \{\mathbf{h}_k \mid k \in \mathbb{Z}_+\}$.

$$\Psi^+: \mathcal{K}^+ \to \mathbb{Z}[\![\mathbf{h}]\!], \quad [B(\Pi^{\mathfrak{g}}(\lambda, \ell))] \mapsto H^{\mathfrak{g}}(\lambda, \ell)$$

Remark $\mathcal{K} = \mathcal{K}^0 \otimes \mathcal{K}^+$ (as vector spaces)

- $\cdot \mathbf{z} = \{ \mathbf{z}_k \mid k \in \mathbb{N} \} : \text{commuting formal variables}$
- · Let $\mathcal{A} = \sum_{n \geq 0} \mathcal{A}_n$, where $\mathcal{A}_0 = \mathbb{Z}[\mathbf{h}]$, $\mathcal{A}_n = \mathcal{A}_0[\mathbf{z}_1, \dots, \mathbf{z}_n]$ $(n \geq 1)$
- \sim A is an algebra under the following inductively-defined multiplication:
- $-A_0 = \mathbb{Z}[\mathbf{h}]$: usual multiplication
- Suppose the multiplication on A_{n-1} is well-defined.

For $a \in \mathcal{A}_{n-1}$, define $az_n = z_n a + \delta_n(a)$ with a derivation δ_n on \mathcal{A}_{n-1}

$$\begin{cases} \delta_n(\mathbf{z}_k) = 0 & (1 \leqslant k \leqslant n-1) \\ \delta_n(\mathbf{h}_a) = \sum_{i=0}^{n-1} \sum_{j=0}^{\min\{a,n-i\}} \mathbf{z}_i \mathbf{h}_{a+n-i-2j} & (a \in \mathbb{Z}_+) \end{cases}$$

Thm [H. 23] There is an isomorphism of \mathbb{Z} -algebras.

$$\Psi: \mathcal{K} \to \mathcal{A}, \quad [B(\varpi_{(1^i)})] \mapsto \mathbf{z}_i, \ [B(\Pi_i^{\mathfrak{g}})] \mapsto \mathbf{h}_j$$

References

- [1] T. Heo, Extremal weight crystals over affine Lie algebras of infinite rank, $arXiv:2305.05188,\ 2023.$
- [2] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73.2 (1994), 383-413.
- [3] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994) 295–345.
- [4] J.-H. Kwon, Crystal duality and Littlewood-Richardson rule of extremal weight crystals, J. Algebra **336** (2011), 99—138.
- [5] J.-H. Kwon, Super duality and crystal bases for quantum orthosymplectic superalgebras, Int. Math. Res. Not. **23** (2015) 12620–12677.
- [6] C. Lecouvey, Crystal bases and combinatorics of infinite rank quantum groups, Trans. Amer. Math. Soc. **361.1** (2009), 297-–329.
- [7] S. Naito and D. Sagaki, Tensor product multiplicities for crystal bases of extremal weight modules over quantum infinite rank affine algebras of types B_{∞} , C_{∞} , and D_{∞} ", Trans. Amer. Math. Soc. **364.12** (2012), 6531—6564.