Pop-Stack for Cambrian Lattices (based upon arXiv:2312.03959)

Emily Barnard ${ }^{1}$, Colin Defant ${ }^{2}$, and Eric J. Hanson ${ }^{3}$
${ }^{1}$ DePaul University
${ }^{2}$ Harvard University
${ }^{3}$ North Carolina State University

FPSAC 2024
Ruhr-Universität Bochum
22-26 July, 2024

The weak order

- W a finite Coxeter group, S set of simple reflections.
- Example: \mathfrak{S}_{n+1} the symmetric group.
- Elements are bijections $w:[n+1] \rightarrow[n+1]$.
- Simple $s_{i}=(i, i+1)$. These are the bold elements below.
- Weak (W) the right weak order on W.

$\operatorname{Weak}\left(\mathfrak{S}_{4}\right)$
(see the next panel for an explanation of the colors)

Cambrian lattices

- Coxeter element $c=s_{i_{1}} \cdots s_{i_{n}}$ product of all simple reflections (each appearing once) in some order.
- Camb_{c} the Cambrian lattice of c. This is the restriction of Weak (W) to the c-sortable elements.
- Example 1: $W=\mathfrak{S}_{n+1}, c^{\rightarrow}=s_{1} \cdots s_{n}$.
- Sortable elements are 312-avoiding.
- $\mathrm{Camb}_{c} \rightarrow$ is the Tamari lattice.
- Example 2: $W=\mathfrak{S}_{n+1}, c^{\times}=c_{(n)}^{\times}=\left(\prod_{i \text { odd }} s_{i}\right)\left(\prod_{i \text { even }} s_{i}\right)$.
- Called the bipartite case.
- Sortable elements avoid 312 with 2 odd and 231 with 2 even.
- On the previous panel:
- Purple elements are both c^{\rightarrow} - and c^{\times}-sortable,.
- Orange elements are c^{\rightarrow}-sortable but not c^{\times}-sortable.
- Blue elements are c^{\times}-sortable but not c^{\rightarrow}-sortable.

Pop-stack operators

Let L be a lattice with meet operation \wedge and join operation \vee. The pop-stack operator pop ${ }_{L}^{\downarrow}: L \rightarrow L$ is defined by

$$
\operatorname{pop}_{L}^{\downarrow}(x)=x \wedge(\bigwedge\{y \mid y \lessdot x\})
$$

where we write $u \lessdot v$ to mean that u is covered by v in L. The dual pop-stack operator $\operatorname{pop}_{L}^{\uparrow}: L \rightarrow L$ is defined analogously.

Historical Example [Ung82]: For $L=\operatorname{Weak}\left(\mathfrak{S}_{n+1}\right)$, pop ${ }_{L}^{\downarrow}$ reverses descending runs ${ }^{1}$:

$$
3241 \xrightarrow{\text { pop }^{\downarrow}} 2314 \xrightarrow{\text { pop }^{\downarrow}} 2134 \xrightarrow{\text { pop }^{\downarrow}} 1234
$$

Example [Def22]: For any W, $\operatorname{pop}_{\text {Weak }(W)}^{\downarrow}(w)=w \cdot w_{\circ}(\operatorname{Des}(w))$ (multiply by the longest word in the right descent set of w).

[^0]
Canonical join complex

- Camb_{c} is semidistributive, so every element $w \in \mathrm{Camb}_{c}$ has a canonical join representation $\mathcal{D}(w)$ and a canonical meet representation $\mathcal{U}(w)$.
- Explicitly, $\mathcal{D}(w)$ is the antichain joining to w which generates the smallest possible order ideal. $\mathcal{U}(w)$ is constructed dually.
- The collection of canonical join (resp. meet) representations is a flag simplicial complex. The canonical join complex and canonical meet complex are isomorphic [Bar19].
- An element $x \in \mathrm{Camb}_{c}$ is in the image of pop $_{\text {Camb }}^{c}$ (resp. $\operatorname{pop}_{\text {Camb }_{c}}^{\uparrow}$) if and only if its canonical meet (resp. join) representation is a facet of the canonical meet (resp. join) complex [DW23].

Examples of the image of pop \downarrow

Example $\left[\mathrm{ABB}^{+} 19\right]: w \in \mathfrak{S}_{n+1}$ is in the image of $\operatorname{pop}_{\text {Weak }\left(\mathfrak{S}_{n+1}\right)}^{\downarrow}$ if and only if each adjacent pair of ascending runs is overlapping.

Example [Hon22]: $w \in \mathrm{Camb}_{c \rightarrow}$ is in the image of pop $_{\text {Camb }_{c} \rightarrow}^{\downarrow}$ if and only if w contains no double descents (i.e., there are no descending runs of length >2) and $w(n+1)=(n+1)$.
Examples: elements of the image are shaded blue.

Camb $_{c} \rightarrow$

$\mathrm{Camb}_{c^{\times}}$

Characterization of the image of pop ${ }_{\text {Camb }_{c}}^{\downarrow}$

Now let W and c be arbitrary. For $s_{i} \in S$, denote

$$
p_{i}=\bigvee\left\{w \in \mathrm{Camb}_{c} \mid s_{i} \leq w \text { and } s_{j} \not \leq w \text { for all } s_{j} \in S \backslash\left\{s_{i}\right\}\right\}
$$

(These elements are shaded orange in the examples.)

Theorem (Barnard-Defant-Hanson [BDH])

Let $w \in \mathrm{Camb}_{c}$. Then the following are equivalent.

- w is in the image of pop $_{\text {Camb }_{c}}^{\downarrow}$.

O the right descents of w all commute and w has no left inversions in common with c^{-1}.

- The interval $\left[\operatorname{pop}_{\text {Camb }_{c}}^{\downarrow}(w), w\right]$ is Boolean and $p_{i} \not \leq w$ for all $s_{i} \in S$.

Quiver representations lurking in the background!

We prove the theorem above using representations of quivers:

- The Coxeter element c induces an orientation Q of the Coxeter graph of W.
- For W crystallographic ${ }^{2}$, the lattice Camb $_{c}$ can be modeled as the lattice of torsion classes of representations of Q [IT09].
- The canonical join representation $\mathcal{D}(w)$ of some $w \in \mathrm{Camb}_{c}$ can be encoded as a set of representations $\mathcal{X}(w)$ [BCZ19].
- The condition on descents commuting translates to there being no extensions between the representations in $\mathcal{X}(w)$.
- The condition on inversions (and on the elements p_{i}) translates to there being no projective representations in $\mathcal{X}(w)$.
${ }^{2}$ The non-crystallographic cases are proved by direct computation.

Iterations of pop-stack

The following is a consequence of the first theorem and additional representation-theoretic arguments:

Theorem (Barnard-Defant-Hanson [BDH])

Let $w \in \mathrm{Camb}_{c}$. Then, for $t \geq 0$,

$$
\left(\operatorname{pop}_{\operatorname{Camb}_{c}}^{\downarrow}\right)^{t+1}(w)=\left(\operatorname{pop}_{\operatorname{Weak}(W)}^{\downarrow}\right)^{t}\left(\operatorname{pop}_{\operatorname{Camb}_{c}}^{\downarrow}(w)\right)
$$

Arc diagrams

- For $w \in \mathfrak{S}_{n+1}$, one obtains a noncrossing arc diagram $\Delta(w)$ by graphing the descending runs of w. For example:

where e.g. the arc 42 passes over 3 because $w^{-1}(4)<w^{-1}(3)$.
- We denote $\mathrm{AD}\left(c^{\times}\right)=\left\{\Delta(w) \mid w \in \mathrm{Camb}_{c \times}\right\}$. By [Rea15], an arc diagram δ is in $\mathrm{AD}\left(c^{\times}\right)$if and only if no arc of δ passes above an even node or below an odd node.
- The arcs in $\Delta(w)$ correspond to the canonical joinands of w, so the facets of the canonical join complex correspond to the set $\operatorname{MAD}\left(c^{\times}\right)$of maximal elements of $\operatorname{AD}\left(c^{\times}\right)$with respect to inclusion of sets of arcs.

Motzkin paths

- A Motzkin path is a lattice path in the plane that consists of up $(\mathrm{U}=(1,1))$ steps, down $(\mathrm{D}=(1,-1))$ steps, and horizontal $(H=(1,0))$ steps, starts at the origin, never passes below the horizontal axis, and ends on the horizontal axis. (An example is given below.)
- Let $\overline{\mathcal{M}}_{n}$ be the set of Motzkin paths of length n that have no peaks of height 1 (i.e., that do not pass through all of the points $(i, 0),(i+1,1)$, and $(i+2,0)$ for any $i \in \mathbb{N})$.
- Suppose $\delta \in \operatorname{MAD}\left(c^{\times}\right)$. Let $\Psi(\delta)$ be the word $M_{1} \cdots M_{n+1}$, where for $1 \leq i \leq n+1$, we define

$$
\mathrm{M}_{i}= \begin{cases}\mathrm{U} & \text { if } i \leq n \text { and } i+1 \text { is not the right endpoint of an arc in } \delta ; \\ \mathrm{D} & \text { if } i \geq 2 \text { and } i-1 \text { is not the left endpoint of an arc in } \delta ; \\ \mathrm{H} & \text { otherwise. }\end{cases}
$$

Bijection

Theorem (Barnard-Defant-Hanson [BDH])

- The map Ψ is a bijection from $\operatorname{MAD}\left(c^{\times}\right)$to $\overline{\mathcal{M}}_{n+1}$.
- For each $\delta \in \operatorname{MAD}\left(c^{\times}\right)$, we have $|\delta|=n-\#_{\mathrm{U}}(\Psi(\delta))$.

Enumeration

$$
\left.\begin{array}{l}
\text { Let } I^{\downarrow}=\operatorname{image}\left(\operatorname{pop}_{\operatorname{Camb}}^{c_{(n)}^{\times}}\right. \\
\downarrow
\end{array}\right), I^{\uparrow}=\operatorname{image}\left(\operatorname{pop}_{\operatorname{Camb}_{c_{(n)}^{\times}}^{\uparrow}}^{\uparrow}\right) \text {, and } .
$$

An enumerative consequence of the bijection Ψ is:

$$
\sum_{n \geq 1} \mathbf{P}_{\mathrm{Camb}_{c_{(n)}^{\times}}}(q) z^{n}=\frac{1}{q z}\left(\frac{2}{1-q z(1-2 z)+\sqrt{1+q^{2} z^{2}-2 q z(1+2 z)}}-1\right)-1
$$

(See OEIS A089372.)

Quotients of the weak order

- The Coxeter number of W is the quantity $h=2|T| /|S|$, where T is the set of reflections in W.
- For L a lattice and $x \in L$, denote

$$
\mathcal{O}_{L}(x)=\left\{x, \operatorname{pop}_{L}^{\downarrow}(x),\left(\operatorname{pop}_{L}^{\downarrow}\right)^{2}(x), \ldots\right\}
$$

- By [Def22] (and [Ung82] in type A), $\max _{x \in W}\left|\mathcal{O}_{\text {Weak }(W)}(x)\right|=h$.

Theorem (Barnard-Defant-Hanson [BDH])

If W_{\equiv} is a lattice quotient of $\operatorname{Weak}(W)$, then $\max _{x \in W \equiv}\left|\mathcal{O}_{W \equiv}(x)\right| \leq h$.

Theorem (Barnard-Defant-Hanson [BDH])

For each Coxeter element c of W, we have $\max _{x \in W \equiv}\left\{\left|\mathcal{O}_{\operatorname{Camb}_{c}}(x)\right|\right\}=h$.

Maximizers

Elements \mathbf{z}_{c} realizing $\left|\mathcal{O}_{\operatorname{Camb}_{c}}\left(\mathbf{z}_{c}\right)\right|=h$ are obtained by applying pop ${ }^{\uparrow}$ in the spine ${ }^{3}$ (the union of maximal length chains) of Camb_{c}. Precisely,

$$
\mathbf{z}_{c}=\left(\operatorname{pop}_{\operatorname{spine}\left(\operatorname{Camb}_{c}\right)}^{\uparrow}\right)^{h-1}(e)
$$

where $e=\hat{0}$ is the identity element. For example (in type B_{3}):

${ }^{3}$ This is a distributive sublattice of Camb $_{c}$ by [HLT11].

References

$\left[\mathrm{ABB}^{+} 19\right]$ A. Asinowski, C. Banderier, S. Biley, B. Hackl, and S. Linusson, Pop-stack sorting and its image: permutations with overlapping runs, Acta Math. Univ. Comenianae 88 (2019), 395-402.
[Bar19] E. Barnard, The canonical join complex, Electron. J. Combin. 26 (2019).
[BCZ19] E. Barnard, A. Carroll, and S. Zhu, Minimal inclusions of torsion classes, Algebraic Combin. 2 (2019), no. 5, 879-901.
[BDH] E. Barnard, C. Defant, and E.J. Hanson, Pop-stack operators for torsion classes and Cambrian lattices, arXiv:2312.03959.
[Def22] C. Defant, Pop-stack-sorting for Coxeter groups, Comb. Theory 2 (2022).
[DW23] C. Defant and N. Williams, Semidistrim lattices, Forum Math. Sigma 11 (2023), no. 50, 1-35.
[HLT11] C. Hohlweg, C. Lange, and H. Thomas, Permutahedra and generalized associahedra, Adv. Math. 226 (2011), 608-640.
[Hon22] L. Hong, The pop-stack sorting operator on Tamari lattices, Adv. Appl. Math. 139 (2022).
[IT09] C. Ingalls and H. Thomas, Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009), no. 6, 1533-1562.
[Rea15] N. Reading, Noncrossing arc diagrams and canonical join representations, SIAM J. Discrete Math. 29 (2015), no. 2, 736-750.
[Ung82] P. Ungar, $2 N$ noncollinear points determine at least $2 N$ directions, J. Combin. Theory Ser. A 33 (1982), 343-347.

[^0]: ${ }^{1}$ This is the original definition of pop ${ }^{\downarrow}$ for permutations. It is equivalent to the version defined here (with $L=\operatorname{Weak}\left(\mathfrak{S}_{n+1}\right)$) by [Def22].

