Pop-Stack for Cambrian Lattices (based upon arXiv:2312.03959)

Emily Barnard¹, Colin Defant², and Eric J. Hanson³ ¹DePaul University ²Harvard University ³North Carolina State University

> FPSAC 2024 Ruhr-Universität Bochum 22-26 July, 2024

The weak order

- W a finite Coxeter group, S set of simple reflections.
- Example: \mathfrak{S}_{n+1} the symmetric group.
 - Elements are bijections $w : [n+1] \rightarrow [n+1]$.
 - Simple $s_i = (i, i + 1)$. These are the bold elements below.
- Weak(W) the right *weak order* on W.

 $\operatorname{Weak}(\mathfrak{S}_4)$ (see the next panel for an explanation of the colors)

Cambrian lattices

- Coxeter element $c = s_{i_1} \cdots s_{i_n}$ product of all simple reflections (each appearing once) in some order.
- Camb_c the Cambrian lattice of c. This is the restriction of Weak(W) to the c-sortable elements.
- Example 1: $W = \mathfrak{S}_{n+1}, c^{\rightarrow} = s_1 \cdots s_n$.
 - Sortable elements are 312-avoiding.
 - $\operatorname{Camb}_{c^{\rightarrow}}$ is the Tamari lattice.
- Example 2: $W = \mathfrak{S}_{n+1}$, $c^{\times} = c_{(n)}^{\times} = (\prod_{i \text{ odd}} s_i) (\prod_{i \text{ even}} s_i)$.
 - Called the *bipartite* case.
 - Sortable elements avoid 312 with 2 odd and 231 with 2 even.
- On the previous panel:
 - Purple elements are both c^{\rightarrow} and c^{\times} -sortable,.
 - Orange elements are c^{\rightarrow} -sortable but not c^{\times} -sortable.
 - Blue elements are c^{\times} -sortable but not c^{\rightarrow} -sortable.

Pop-stack operators

Let *L* be a lattice with meet operation \land and join operation \lor . The *pop-stack operator* $pop_{L}^{\downarrow} : L \to L$ is defined by

$$\operatorname{pop}_{\mathcal{L}}^{\downarrow}(x) = x \wedge \left(\bigwedge \{ y \mid y \leqslant x \} \right),$$

where we write $u \ll v$ to mean that u is covered by v in L. The *dual pop-stack operator* $pop_L^{\uparrow} : L \to L$ is defined analogously.

Historical Example [Ung82]: For $L = \text{Weak}(\mathfrak{S}_{n+1})$, $\text{pop}_{L}^{\downarrow}$ reverses descending runs¹:

$$3241 \xrightarrow{\text{pop}\downarrow} 2314 \xrightarrow{\text{pop}\downarrow} 2134 \xrightarrow{\text{pop}\downarrow} 1234$$

Example [Def22]: For any W, $pop_{Weak(W)}^{\downarrow}(w) = w \cdot w_{\circ}(Des(w))$ (multiply by the longest word in the right descent set of w).

¹This is the original definition of pop^{\downarrow} for permutations. It is equivalent to the version defined here (with $L = Weak(\mathfrak{S}_{n+1})$) by [Def22].

Canonical join complex

- Camb_c is semidistributive, so every element w ∈ Camb_c has a canonical join representation D(w) and a canonical meet representation U(w).
- Explicitly, D(w) is the antichain joining to w which generates the smallest possible order ideal. U(w) is constructed dually.
- The collection of canonical join (resp. meet) representations is a flag simplicial complex. The *canonical join complex* and *canonical meet complex* are isomorphic [Bar19].
- An element x ∈ Camb_c is in the image of pop[↓]_{Camb_c} (resp. pop[↑]_{Camb_c}) if and only if its canonical meet (resp. join) representation is a facet of the canonical meet (resp. join) complex [DW23].

Examples of the image of pop^{\downarrow}

Example [ABB⁺19]: $w \in \mathfrak{S}_{n+1}$ is in the image of $\operatorname{pop}_{\operatorname{Weak}(\mathfrak{S}_{n+1})}^{\downarrow}$ if and only if each adjacent pair of ascending runs is overlapping.

Example [Hon22]: $w \in \operatorname{Camb}_{c^{\rightarrow}}$ is in the image of $\operatorname{pop}_{\operatorname{Camb}_{c^{\rightarrow}}}^{\downarrow}$ if and only if w contains no *double descents* (i.e., there are no descending runs of length > 2) and w(n+1) = (n+1).

Examples: elements of the image are shaded blue.

Characterization of the image of $\mathrm{pop}_{\mathrm{Camb}_c}^\downarrow$

Now let W and c be arbitrary. For $s_i \in S$, denote

$$p_i = \bigvee \{ w \in \operatorname{Camb}_c \mid s_i \leq w \text{ and } s_j \not\leq w \text{ for all } s_j \in S \setminus \{s_i\} \}.$$

(These elements are shaded orange in the examples.)

Theorem (Barnard-Defant-Hanson [BDH])

Let $w \in \operatorname{Camb}_c$. Then the following are equivalent.

- w is in the image of $\operatorname{pop}_{\operatorname{Camb}_c}^{\downarrow}$.
- the right descents of w all commute and w has no left inversions in common with c⁻¹.
- The interval [pop[↓]_{Camb_c}(w), w] is Boolean and p_i ≤ w for all s_i ∈ S.

Quiver representations lurking in the background!

We prove the theorem above using *representations of quivers*:

- The Coxeter element *c* induces an orientation *Q* of the *Coxeter graph* of *W*.
- For *W* crystallographic², the lattice Camb_c can be modeled as the *lattice of torsion classes* of representations of *Q* [IT09].
- The canonical join representation $\mathcal{D}(w)$ of some $w \in \operatorname{Camb}_c$ can be encoded as a set of representations $\mathcal{X}(w)$ [BCZ19].
- The condition on descents commuting translates to there being no *extensions* between the representations in X(w).
- The condition on inversions (and on the elements p_i) translates to there being no *projective representations* in $\mathcal{X}(w)$.

²The non-crystallographic cases are proved by direct computation.

Iterations of pop-stack

The following is a consequence of the first theorem and additional representation-theoretic arguments:

Theorem (Barnard-Defant-Hanson [BDH])

Let $w \in \operatorname{Camb}_{c}$. Then, for $t \geq 0$,

$$\left(\operatorname{pop}_{\operatorname{Camb}_{c}}^{\downarrow}\right)^{t+1}(w) = \left(\operatorname{pop}_{\operatorname{Weak}(W)}^{\downarrow}\right)^{t}\left(\operatorname{pop}_{\operatorname{Camb}_{c}}^{\downarrow}(w)\right).$$

Arc diagrams

For w ∈ 𝔅_{n+1}, one obtains a noncrossing arc diagram Δ(w) by graphing the descending runs of w. For example:

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

 $w = 86|742|51|3 \in \mathfrak{S}_8$

where e.g. the arc 42 passes over 3 because $w^{-1}(4) < w^{-1}(3)$.

- We denote AD(c[×]) = {Δ(w) | w ∈ Camb_{c[×]}}. By [Rea15], an arc diagram δ is in AD(c[×]) if and only if no arc of δ passes above an even node or below an odd node.
- The arcs in Δ(w) correspond to the canonical joinands of w, so the facets of the canonical join complex correspond to the set MAD(c[×]) of maximal elements of AD(c[×]) with respect to inclusion of sets of arcs.

Motzkin paths

- A *Motzkin path* is a lattice path in the plane that consists of up (U = (1, 1)) steps, down (D = (1, -1)) steps, and horizontal (H = (1, 0)) steps, starts at the origin, never passes below the horizontal axis, and ends on the horizontal axis. (An example is given below.)
- Let $\overline{\mathcal{M}}_n$ be the set of Motzkin paths of length n that have no peaks of height 1 (i.e., that do not pass through all of the points (i, 0), (i + 1, 1), and (i + 2, 0) for any $i \in \mathbb{N}$).
- Suppose $\delta \in MAD(c^{\times})$. Let $\Psi(\delta)$ be the word $M_1 \cdots M_{n+1}$, where for $1 \leq i \leq n+1$, we define

 $\mathtt{M}_i = \begin{cases} \mathtt{U} & \text{if } i \leq n \text{ and } i+1 \text{ is not the right endpoint of an arc in } \delta; \\ \mathtt{D} & \text{if } i \geq 2 \text{ and } i-1 \text{ is not the left endpoint of an arc in } \delta; \\ \mathtt{H} & \text{otherwise.} \end{cases}$

Bijection

Theorem (Barnard-Defant-Hanson [BDH])

- The map Ψ is a bijection from $MAD(c^{\times})$ to $\overline{\mathcal{M}}_{n+1}$.
- For each $\delta \in MAD(c^{\times})$, we have $|\delta| = n \#_{U}(\Psi(\delta))$.

Enumeration

Let
$$I^{\downarrow} = \operatorname{image}\left(\operatorname{pop}_{\operatorname{Camb}_{c_{(n)}^{\times}}}^{\downarrow}\right)$$
, $I^{\uparrow} = \operatorname{image}\left(\operatorname{pop}_{\operatorname{Camb}_{c_{(n)}^{\times}}}^{\uparrow}\right)$, and
 $\mathbf{P}_{\operatorname{Camb}_{c_{(n)}^{\times}}}(q) := \sum_{w \in I^{\downarrow}} q^{|\mathcal{U}(w)|} = \sum_{w \in I^{\uparrow}} q^{|\mathcal{D}(w)|} = \sum_{\delta \in \operatorname{MAD}(c^{\times})} q^{|\delta|}.$

An enumerative consequence of the bijection Ψ is:

$$\sum_{n\geq 1} \mathsf{P}_{\operatorname{Camb}_{c_{(n)}^{\times}}}(q) z^{n} = \frac{1}{qz} \left(\frac{2}{1 - qz(1 - 2z) + \sqrt{1 + q^{2}z^{2} - 2qz(1 + 2z)}} - 1 \right) - 1.$$

(See OEIS A089372.)

Quotients of the weak order

- The *Coxeter number* of *W* is the quantity h = 2|T|/|S|, where *T* is the set of reflections in *W*.
- For L a lattice and $x \in L$, denote

$$\mathcal{O}_L(x) = \{x, \operatorname{pop}_L^{\downarrow}(x), (\operatorname{pop}_L^{\downarrow})^2(x), \ldots\}.$$

• By [Def22] (and [Ung82] in type A), $\max_{x \in W} |\mathcal{O}_{\operatorname{Weak}(W)}(x)| = h.$

Theorem (Barnard-Defant-Hanson [BDH])

If W_{\equiv} is a lattice quotient of Weak(W), then $\max_{x \in W_{\equiv}} |\mathcal{O}_{W_{\equiv}}(x)| \leq h$.

Theorem (Barnard-Defant-Hanson [BDH])

For each Coxeter element c of W, we have $\max_{x \in W_{\equiv}} \{ |\mathcal{O}_{Camb_c}(x)| \} = h.$

Maximizers

Elements \mathbf{z}_c realizing $|\mathcal{O}_{\text{Camb}_c}(\mathbf{z}_c)| = h$ are obtained by applying pop^{\uparrow} in the *spine*³ (the union of maximal length chains) of Camb_c . Precisely,

$$\mathbf{z}_{c} = \left(\operatorname{pop}_{\operatorname{spine}(\operatorname{Camb}_{c})}^{\uparrow} \right)^{h-1} (e),$$

where $e = \hat{0}$ is the identity element. For example (in type B_3):

³This is a distributive sublattice of $Camb_c$ by [HLT11].

References

- [ABB⁺19] A. Asinowski, C. Banderier, S. Biley, B. Hackl, and S. Linusson, *Pop-stack sorting and its image: permutations with overlapping runs*, Acta Math. Univ. Comenianae 88 (2019), 395–402.
- [Bar19] E. Barnard, The canonical join complex, Electron. J. Combin. 26 (2019).
- [BCZ19] E. Barnard, A. Carroll, and S. Zhu, *Minimal inclusions of torsion classes*, Algebraic Combin. 2 (2019), no. 5, 879–901.
- [BDH] E. Barnard, C. Defant, and E.J. Hanson, Pop-stack operators for torsion classes and Cambrian lattices, arXiv:2312.03959.
- [Def22] C. Defant, Pop-stack-sorting for Coxeter groups, Comb. Theory 2 (2022).
- [DW23] C. Defant and N. Williams, Semidistrim lattices, Forum Math. Sigma 11 (2023), no. 50, 1–35.
- [HLT11] C. Hohlweg, C. Lange, and H. Thomas, Permutahedra and generalized associahedra, Adv. Math. 226 (2011), 608–640.
- [Hon22] L. Hong, The pop-stack sorting operator on Tamari lattices, Adv. Appl. Math. 139 (2022).
- [IT09] C. Ingalls and H. Thomas, Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009), no. 6, 1533–1562.
- [Rea15] N. Reading, Noncrossing arc diagrams and canonical join representations, SIAM J. Discrete Math. 29 (2015), no. 2, 736–750.
- [Ung82] P. Ungar, 2N noncollinear points determine at least 2N directions, J. Combin. Theory Ser. A 33 (1982), 343–347.