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The weak order

o W a finite Coxeter group, S set of simple reflections.
o Example: G,11 the symmetric group.

o Elements are bijections w : [n+ 1] — [n+ 1].

o Simple s; = (i, i + 1). These are the bold elements below.
o Weak(W) the right weak order on W.

’

|2134] [1324] |1243]

Weak(S4)
(see the next panel for an explanation of the colors)



Cambrian lattices

o Coxeter element ¢ = sj, - - - s;, product of all simple reflections
(each appearing once) in some order.

o Camb. the Cambrian lattice of c. This is the restriction of
Weak(W) to the c-sortable elements.

o Example 1: W =6,,1, ¢ =s1-5.
o Sortable elements are 312-avoiding.
o Camb.— is the Tamari lattice.

o Example 2: W = &py1, ¢ = ¢y = (I oaa Si) (I even Si)-
o Called the bipartite case.
o Sortable elements avoid 312 with 2 odd and 231 with 2 even.

o On the previous panel:
o Purple elements are both ¢~ and c*-sortable,.
° elements are ¢ -sortable but not c*-sortable.
o Blue elements are c*-sortable but not ¢ -sortable.



Pop-stack operators

Let L be a lattice with meet operation A and join operation V.
The pop-stack operator popi: L — L is defined by

pop;(x) = x A (/\{y |y < X})

where we write u < v to mean that u is covered by v in L. The
dual pop-stack operator popL L — L is defined analogously.

Historical Example [Ung82]: For L = Weak(&,41), popi reverses
descending runs?:

3241 2%, 0314 PP, 0134 PP, 153y
Example [Def22]: For any W, pOp%iVeak(W)(W) = w - wo(Des(w))
(multiply by the longest word in the right descent set of w).

1This is the original definition of pop* for permutations. It is equivalent to
the version defined here (with L = Weak(S,+1)) by [Def22].



Canonical join complex

o Camb, is semidistributive, so every element w € Camb, has
a canonical join representation D(w) and a canonical meet
representation U(w).

o Explicitly, D(w) is the antichain joining to w which generates
the smallest possible order ideal. /(w) is constructed dually.

o The collection of canonical join (resp. meet) representations is
a flag simplicial complex. The canonical join complex and
canonical meet complex are isomorphic [Bar19].

o An element x € Camb, is in the image of popéambc (resp.

popgambc) if and only if its canonical meet (resp. join)
representation is a facet of the canonical meet (resp. join)
complex [DW23].



Examples of the image of pop*

Example [ABB¥19]: w € &1 is in the image of popiy..s,.,) If
and only if each adjacent pair of ascending runs is overlapping.

Example [Hon22]: w € Camb.~ is in the image of pop‘(l’jarmoc_> if
and only if w contains no double descents (i.e., there are no
descending runs of length > 2) and w(n+ 1) = (n+1).

Examples: elements of the image are shaded blue.

2134 " 1243

Camb— Cambx



Characterization of the image of popéambc

Now let W and c be arbitrary. For s; € S, denote
pi = \/{W € Camb. | s; <w and s; £ w for all s; € S\ {s;}}.

(These elements are shaded orange in the examples.)

Let w € Camb.. Then the following are equivalent.
Q w is in the image of popéambc.
Q the right descents of w all commute and w has no left
inversions in common with ¢ 1.

Q The interval [popéambc(w), w]| is Boolean and p; £ w for all
s;i€S.



Quiver representations lurking in the background!

We prove the theorem above using representations of quivers:
o The Coxeter element c induces an orientation @ of the
Coxeter graph of W.

o For W crystallographic?, the lattice Camb. can be modeled
as the lattice of torsion classes of representations of Q [IT09].

o The canonical join representation D(w) of some w € Camb,
can be encoded as a set of representations X'(w) [BCZ19].

o The condition on descents commuting translates to there
being no extensions between the representations in X' (w).

o The condition on inversions (and on the elements p;)
translates to there being no projective representations
in X(w).

2The non-crystallographic cases are proved by direct computation.



Iterations of pop-stack

The following is a consequence of the first theorem and additional
representation-theoretic arguments:

Theorem (Barnard-Defant-Hanson [BDH])
Let w € Camb,.. Then, for t > 0,

(pOpéambc)tH (w)= (pOpWeak(W)> (pOpéambc(W))'



Arc diagrams

o For w € &1, one obtains a noncrossing arc diagram A(w)
by graphing the descending runs of w. For example:

12-3456/_7\8

w = 86|742|51|3 € &g
where e.g. the arc 42 passes over 3 because w=1(4) < w=1(3).

o We denote AD(c*) = {A(w) | w € Camb.x }. By [Real5],
an arc diagram ¢ is in AD(c*) if and only if no arc of ¢
passes above an even node or below an odd node.

o The arcs in A(w) correspond to the canonical joinands of w,
so the facets of the canonical join complex correspond to the
set MAD(c*) of maximal elements of AD(c*) with respect
to inclusion of sets of arcs.
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Motzkin paths

o A Motzkin path is a lattice path in the plane that consists of
up (U= (1,1)) steps, down (D = (1, —1)) steps, and
horizontal (H = (1,0)) steps, starts at the origin, never passes
below the horizontal axis, and ends on the horizontal axis.
(An example is given below.)

o Let M, be the set of Motzkin paths of length n that have no
peaks of height 1 (i.e., that do not pass through all of the
points (7,0), (i +1,1), and (i + 2,0) for any i € N).

o Suppose 6 € MAD(c*). Let W(J) be the word Mj - - - Mpy1,
where for 1 </ < n+ 1, we define

D ifi>2andi—1is not the left endpoint of an arc in §;

{U if i < nand i+ 1isnot the right endpoint of an arc in §;
M; =

H otherwise.
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Bijection

Theorem (Barnard-Defant-Hanson [BDH])

Q The map V is a bijection from MAD(c*) to Moyt
Q For each 6 € MAD(c*), we have |§| = n — #uy(V(0)).

oe@eom@
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Enumeration

Let /¥ = image (popéamb y > , I = image (popgamb y ) and
(n) “(n)

Pab, . = U= 3" glPIl= N gl

welt welT 0eEMAD(cX)

An enumerative consequence of the bijection W is:

1—qz(1—22) ++/1+ ¢?22 — 2qz(1 + 22)

ZPCmmb % (Q) T=— < 2 1) — 1.

n>1 “(n)

(See OEIS A089372.)
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Quotients of the weak order

o The Coxeter number of W is the quantity h =2|T|/|S]|,
where T is the set of reflections in W.

o For L a lattice and x € L, denote

OL(x) = {x, pop} (x), (pop})?(x), ...}.

o By [Def22] (and [Ung82] in type A), néaﬁ|(9weak(w)(x)| = h.

Theorem (Barnard-Defant-Hanson [BDH])
If W= is a lattice quotient of Weak(W), then max |Ow_(x)| < h.

Theorem (Barnard-Defant-Hanson [BDH])

For each Coxeter element ¢ of W, we have max {|Ocamp.(x)|} = h.

xeW=
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Maximizers

Elements z. realizing |Ocamb, (zc)| = h are obtained by applying
pop' in the spine® (the union of maximal length chains) of

Cambyc. Precisely,

T h—1
Zc = (popspine(Cambc)) (e)’

where e = 0 is the identity element. For example (in type B3):

3This is a distributive sublattice of Camb, by [HLT11].
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