
Determinant of the distance matrix of a tree

Emmanuel Briand1, Luis Esquivias-Quintero1, Álvaro Gutiérrez2, Adrián Lillo1, Mercedes Rosas1

1University of Seville, 2University of Bristol
Grant PID2020-117843GB-I00 funded by MCIN/AEI/10.13039/501100011033.

Graham and Pollak’s Theorem

Theorem (Graham–Pollak, 1971). The determinant of the distance matrix
M(T) of a tree T depends only on its number of vertices n. Precisely:

detM(T) = (−1)n−1(n− 1)2n−2.
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= +6 · 25.

Elementary proofs are known, but...

What does (n− 1)2n−2 count?

We give the first combinatorial proof.

Catalysts and arrowflows

detM(T) =
∑
σ∈Sn

ϵ(σ)
∏
i

︷ ︸︸ ︷
d(i, σ(i))︸ ︷︷ ︸

# edges between i and σ(i)

# pairs (σ, f) with σ ∈ Sn, f : V → E such that
f(i) is an edge between i and σ(i) for all i

We call such a pair a catalyst; we have detM(T) =
∑

(σ,f) catalyst ϵ(σ).
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A marked path (P(1, 7); e5)

from 1 to 7 marked at e5 = {2, 6}.
A catalyst (σ, f), where

σ = 7521643 and f = e5e4e2e3e4e1e1.

Goal. Define involutions on the set of catalysts such that

detM(T) = ± #fixed points of the involution.

Arrowflows

Definition. An arrowflow is a multiset of n directed edges of E⃗.

A catalyst.

hole

antiparallelsparallels

Its arrowflow.

We have detM(T) =
∑

A arrowflow
∑

(σ,f) catalyst of A ϵ(σ).

Combinatorial proof of Graham and Pollak’s Theorem

Theorem.
∑

(σ,f) catalyst of A ϵ(σ) =

0 if A has holes or parallels,
(−1)n−1 otherwise.

An arrowflow without holes or parallels has exactly one antiparallel pair.

Corollary. detM(T) = (−1)n−1
︷ ︸︸ ︷
(n− 1) 2n−2︸ ︷︷ ︸.

choices for the antiparallel pair

of the single arcs
choices for the orientations

Proof of theorem (sketch).
1 Sign-reversing involution to kill catalysts whose arrowflow has holes or parallels.

σ(i)

i j

σ(j)
f(i) f(j) ←→ σ̃(j)

i j

σ̃(i)f̃(j) f̃(i)

2 For every other A, construction of a network RA (the route map) such that

{catalysts of A} 1:1←→ {n-families of paths in RA}

and such that there is a unique non-intersecting family in RA.

3 Lindström–Gessel–Viennot Lemma. Given a network R with sources
{∆1, ..., ∆n} and sinks {∇1, ...,∇n},∑

P=(P1,...,Pn)

ϵ(σP) =
∑

P=(P1,...,Pn)
non-intersecting

ϵ(σP)

where Pi is a path ∆i→ ∇σP(i).

Route maps

The route map RA is the union of two hemisphere networks, S and N . Nodes of
S and N correspond to vertices, oriented edges and oriented sectors of a planar em-
bedding of a rooted subdivision of T . Paths in RA lift marked paths in T .
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Nodes of RA Lift of the marked path (P(1, 7); e5).

Generalizations

Introduce variables xij, xji, yij, yji, zij, zji for {i, j} ∈ E. Set xji = x−1
ij for all i, j.

Let w(P(1, 7); e5) = x12y26z67, let w(σ, f) =
∏

iw(P(i, σ(i)); f(i)).

Let M ′(T)ij =
∑

e∈P(i,j)w(P(i, j); e).

Theorem.

detM ′(T) = (−1)n−1
∑

{a,b}∈E
yabyba

∏
(i,j)

(yijxji + yjizij),

as (i, j) ranges over oriented edges “pointing to {a, b}”.

Proof. All of the involutions are weight-preserving. ■

This implies every generalization in the literature, and two new ones.

Graham–Pollak‘71 Bapat–Kirkland–Neumann‘05 Bapat–Lal–Pati‘16

Yan–Yeh‘07 Yan–Yeh‘07

Choudhury–Khare‘19

Li–Su–Zhang‘14

BEGLR(ii)

BEGLR(i)

βij = 1 βij = βji

q = 1 q = 1
βij = 1 βij = βji

q = 1

zij=1+(q−1)βij

α{ij}=(q−1)−1

xij = 1

yij = α{ij}(zij − xij)

We simplify q-analogs with new concepts of q-sum
and q-distance. Our main formula BEGLR(i) is the first
one that depends on the structure of T .

We also have a formula for principal minors of M(T).
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