

Graham and Pollak's Theorem

Elementary proofs are known, but...

What does $(n-1)2^{n-2}$ count?

We give the first *combinatorial proof*.

Catalysts and arrowflows

$$det M(T) = \sum_{\sigma \in \mathbb{S}_n} \varepsilon(\sigma) \prod_{i} \overbrace{d(i, \sigma(i))}^{i} \# \text{ pairs } (\sigma, f) \text{ with } \sigma \in \mathbb{S}_r$$

$$f(i) \text{ is an edge between } i a$$

pairs (σ, f) with $\sigma \in \mathbb{S}_n$, $f: V \to E$ such that f(i) is an edge between i and $\sigma(i)$ for all i

We call such a pair a *catalyst*; we have det $M(T) = \sum_{(\sigma,f) \text{ catalyst}} \epsilon(\sigma)$.

Goal. Define involutions on the set of catalysts such that

det $M(T) = \pm \#$ fixed points of the involution.

Determinant of the distance matrix of a tree

Emmanuel Briand¹, Luis Esquivias-Quintero¹, *Álvaro Gutiérrez²*, Adrián Lillo¹, Mercedes Rosas¹

¹University of Seville, ²University of Bristol Grant PID2020-117843GB-I00 funded by MCIN/AEI/10.13039/501100011033.

Arrowflows

Theorem.
$$\sum_{(\sigma,f) \text{ catalyst of } A} \varepsilon(\sigma) = \begin{cases} 0 \\ (-1)^{n-1} \end{cases}$$

Corollary. det $M(T) = (-1)^{n-1} (n-1) 2^{n-2}$.

Proof of theorem (sketch).

$$\sigma(i) \xrightarrow{f(i)}_{i \quad j} \sigma(j) \xrightarrow{\sigma(j)}_{i \quad j} \sigma(j)$$

$$\sum_{P=(P_1,...,P_n)} \epsilon(\sigma_P) = \sum_{\substack{P=(P_1,...,P_n)\\non-inter}} \epsilon(\sigma_P) =$$

where P_i is a path $\Delta_i \rightarrow \nabla_{\sigma_P(i)}$.

36th International Conference on Formal Power Series and Algebraic Combinatorics, July 22–26 2024, Bochum

The route map \mathcal{R}_A is the union of two *hemisphere* networks, \mathcal{S} and \mathcal{N} . Nodes of ${\cal S}$ and ${\cal N}$ correspond to vertices, oriented edges and oriented sectors of a planar embedding of a rooted subdivision of T. Paths in \mathcal{R}_A lift marked paths in T.

Introduce variables x_{ij} , x_{ji} , y_{ij} , y_{ji} ,

Let
$$w(P(1,7);e_5) = x_{12}y_{26}z_{12}$$

Let $M'(T)_{ij} = \sum_{e \in P(i,j)} w(P(i,j);e).$

Theorem.

 $\det M'(T) = (-1)^{n}$

as (i, j) ranges over oriented edge

Proof. All of the involutions are weight-preserving. This implies *every generalization* in the literature, and two new ones.

Graham–Pollak'71
$$\leftarrow \beta_{ij} = 1$$
 Bapat-
 $q = 1$
 $\beta_{ij} = 1$
Yan–Yeh'07 $\leftarrow \beta_{ij} = 1$

t-Kirkland-Neumann'05 $\leftarrow^{\beta_{ij} = \beta_{ji}}$ Bapat-Lal-Pati'16 $\beta_{ij} = \beta_{ji}$ Li–Su–Zhang'14 $z_{ij} = 1 + (q-1)\beta_{ij} \uparrow$ $\alpha_{\{ij\}} = (q-1)^{-1}$ Choudhury–Khare'19 $x_{ij} = 1$ BEGLR(ii) $\mathbf{y}_{ij} = \alpha_{\{ij\}}(z_{ij} - \mathbf{x}_{ij})$ BEGLR(i)

We simplify q-analogs with new concepts of q-sum and q-distance. Our main formula BEGLR(i) is the first one that depends on the structure of T. We also have a formula for principal minors of M(T).

Route maps

Generalizations

, Z _{ij} ,	z_{ji} for $\{i, j\} \in E$. Set $x_{ji} = x_{ij}^{-1}$ for all i, j .
67,	let $w(\sigma, f) = \prod_{i} w(P(i, \sigma(i)); f(i)).$

$$^{-1}\sum_{\{a,b\}\in E} y_{ab}y_{ba}\prod_{(i,j)} (y_{ij}x_{ji} + y_{ji}z_{ij}),$$

es "pointing to {a, b}".