Determinant of the distance matrix of a tree

Emmanuel Briand ${ }^{1}$, Luis Esquivias-Quintero ${ }^{1}$, Álvaro Gutiérrez ${ }^{2}$, Adrián Lillo ${ }^{1}$, Mercedes Rosas ${ }^{1}$
${ }^{1}$ University of Seville, ${ }^{2}$ University of Bristol
Grant PID2020-117843GB-I00 funded by MCIN/AEI/10.13039/501100011033.

Theorem (Graham-Pollak, 1971). The determinant of the distance matrix $M(T)$ of a tree T depends only on its number of vertices n. Precisely:

$$
\operatorname{det} M(T)=(-1)^{n-1}(n-1) 2^{n-2}
$$

Elementary proofs are known, but...
What does $(n-1) 2^{n-2}$ count?
We give the first combinatorial proof.

Catalysts and arrowflows

 \# pairs (σ, f) with $\sigma \in \mathbb{S}_{n}, f: V \rightarrow E$ such th

We call such a pair a catalyst; we have $\operatorname{det} M(T)=\sum_{(\sigma, f) \text { catalyst }} \epsilon(\sigma)$.

Goal. Define involutions on the set of catalysts such that

$$
\operatorname{det} M(T)= \pm \# \text { fixed points of the involution. }
$$

Arrowflows

Definition. An arrowflow is a multiset of n directed edges of \vec{E}.

A catalyst.

We have $\operatorname{det} M(T)=\sum_{A \text { arrowflow }} \sum_{(\sigma, f) \text { catalyst of } A} \in(\sigma)$.

Combinatorial proof of Graham and Pollak's Theorem

$$
\text { Theorem. } \sum_{(\sigma, f) \text { catalyst of } \mathrm{A}} \in(\sigma)= \begin{cases}0 & \text { if A has holes or parallels, } \\ (-1)^{\mathrm{n}-1} & \text { otherwise. }\end{cases}
$$

An arrowflow without holes or parallels has exactly one antiparallel pair.

$$
\begin{aligned}
& \text { Corollary. } \operatorname{det} M(T)=(-1)^{n-1} \overbrace{(n-1)}^{\underbrace{2^{n-2}}} \text { choices for the antiparallel pair } \\
& \text { Proof of theorem (sketch). }
\end{aligned}
$$

(1) Sign-reversing involution to kill catalysts whose arrowflow has holes or parallels.
(2) For every other A, construction of a network \mathcal{R}_{A} (the route map) such that

$$
\{\text { catalysts of } A\} \stackrel{1: 1}{\longleftrightarrow}\left\{\text { n-families of paths in } \mathcal{R}_{A}\right\}
$$

and such that there is a unique non-intersecting family in \mathcal{R}_{A}.
© Lindström-Gessel-Viennot Lemma. Given a network \mathcal{R} with sources $\left\{\Delta_{1}, \ldots, \Delta_{n}\right\}$ and sinks $\left\{\nabla_{1}, \ldots, \nabla_{n}\right\}$,

$$
\sum_{\mathrm{P}=\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right)} \epsilon\left(\sigma_{\mathrm{P}}\right)=\sum_{\substack{\mathrm{P}=\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right) \\ \text { non-intersecting }}} \epsilon\left(\sigma_{\mathrm{P}}\right)
$$

where P_{i} is a path $\Delta_{i} \rightarrow \nabla_{\sigma_{P}(i)}$.

Route maps
The route map \mathcal{R}_{A} is the union of two hemisphere networks, \mathcal{S} and \mathcal{N}. Nodes of \mathcal{S} and \mathcal{N} correspond to vertices, oriented edges and oriented sectors of a planar embedding of a rooted subdivision of T. Paths in $\mathcal{R}_{\mathcal{A}}$ lift marked paths in T.

Nodes of \mathcal{R}_{A}

Lift of the marked path $\left(P(1,7) ; e_{5}\right)$

Generalizations

Introduce variables $x_{i j}, x_{j i}, y_{i j}, y_{j i}, z_{i j}, z_{j i}$ for $\{i, j\} \in E$. Set $x_{j i}=x_{i j}^{-1}$ for all $\mathfrak{i}, \mathfrak{j}$

$$
\text { Let } w\left(\mathrm{P}(1,7) ; e_{5}\right)=x_{12} \mathrm{y}_{26} \mathcal{z}_{67}, \quad \text { let } w(\sigma, f)=\prod_{i} w(\mathrm{P}(\mathfrak{i}, \sigma(\mathfrak{i})) ; \mathrm{f}(\mathfrak{i})) .
$$

$$
\text { Let } M^{\prime}(T)_{i j}=\sum_{e \in P(i, j)} w(P(i, j) ; e)
$$

Theorem.

$$
\operatorname{det} M^{\prime}(T)=(-1)^{\mathfrak{n}-1} \sum_{\{a, b\} \in \mathrm{E}} y_{a b} y_{b a} \prod_{(i, j)}\left(y_{i j} x_{j i}+y_{j i} z_{i j}\right)
$$

as $(\mathfrak{i}, \mathfrak{j})$ ranges over oriented edges "pointing to $\{a, b\}$ ".
Proof. All of the involutions are weight-preserving
This implies every generalization in the literature, and two new ones.

