The somewhere-to-below shuffles in the symmetric group

 and Hecke algebrasDarij Grinberg (Drexel University) and Nadia Lafrenière (Concordia University)

Summary

We define the somewhere-to-below shuffles, a family of elements of the symmetric group algebra.
These elements are simultaneously triangularizable in a combinatorial basis of the symmetric group algebra that we introduce.

- We give a filtration of $\mathrm{k}\left[S_{n}\right]$-modules invariant under the somewhere-to-below shuffles.
- The eigenvalues of the somewhere-to-below shuffles and their linear combinations have an easy expression.
-We interpret the somewhere-to-below shuffles and their linear combination as card shuffling methods, and give a strong stationary time for the random-to-below shuffle.

Somewhere-to-below shuffles

- Cycles: cyc $_{i_{1}, i_{2}, \ldots, i_{m}}$
denotes the m-cycle sending $i_{1} \mapsto i_{2} \mapsto \cdots \mapsto i_{m} \mapsto i_{1}$
- We look at cycles made of adjacent cards: cyc $i_{i, i+1, \ldots, j}$ denotes the
cycle sending $i \mapsto i+1 \mapsto \cdots \mapsto j \mapsto i$
- The n somewhere-to-below shuffles $t_{1}, t_{2}, \ldots, t_{n}$ are

$$
t_{i}=\operatorname{cyc}_{i}+\operatorname{cyc}_{i, i+1}+\ldots+\operatorname{cyc}_{i, i+1, \ldots, n}
$$

- They are called somewher-to-below due to their card shuffling interpretation: t_{i} represents the act of taking the card at position and moving it anywhere weakly below.

Right action

We view the elements of the symmetric group as endomorphisms of the symmetric group algebra. They act on the right (action on positions, aka right multiplication).

Linear combination

The linear combinations of somewhere-to-below shuffles are called one-sided cycle shuffles. Two of then are of particular interest.

Tod-to-random	Random-to-below
Top-to-random corresponds to $\frac{1}{n} t_{1}$, and has been well-studied as a card shuffling technique. Its eigenvalues are known to be $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-2}{n}, 1\right\}$.	Random-to-below is the shuffle that picks a card uniformly at random, and inserts it weakly below, uniformly at random. This is $\frac{1}{n^{2}} t_{1}+\frac{1}{n(n-1)} t_{2}+\frac{1}{n(n-2)} t_{3}+\cdots+\frac{1}{n} t_{n} .$

Lacunar sets
Set $[k]:=\{1,2, \ldots, k\}$ for any k
A lacunar set is a subset of $[n-1]$ that does not contain consecutive integers. Known fact: The number of lacunar sets of $\{1,2, \ldots, n-1\}$ is the ($n+1$)-th Fibonacci number.
For a lacunar set I and an integer $\ell \in[n]$, we define the number

$$
m_{I, \ell}=(\text { smallest element of } I \cup\{n+1\} \text { that is } \geq \ell)-\ell \in[0, n] .
$$

Example
For $n=4$, the following five subsets of $\{1,2,3\}$ are lacunar:

I	$m_{I, 1}$	$m_{I, 2}$	$m_{I, 3}$	$m_{I, 4}$
\emptyset	4	3	2	1
$\{1\}$	0	3	2	1
$\{2\}$	1	0	2	1
$\{3$	2	1	0	1
$\{1,3\}$	0	1	0	1

Descent-destroying basis

Definition

For each $w \in S_{n}$, we define the descent set of w to be the set

$$
\operatorname{Des} w:=\{i \in[n-1] \mid w(i)>w(i+1)\} .
$$

For each $i \in[n-1]$, we define the simple transposition $s_{i}:=\operatorname{cyc}_{i, i+1} \in S_{n}$
For each $w \in S_{n}$, we define $\quad a_{w}:=\sum_{\sigma \in\left\langle s_{i} \mid i \in \operatorname{Des} w\right\rangle} w \sigma \in \mathbf{k}\left[S_{n}\right]$.
Proposition
The family $\left(a_{w}\right)_{w \in S_{n}}$ is a basis of $\mathbf{k}\left[S_{n}\right]$. We call it the descent-destroying basis.
Example
For $n=3$, we have

$a_{[123]}=[123] ;$	$a_{[231]}=[231]+[213] ;$
$a_{[132]}=[132]+[123] ;$	$a_{[312]}=[312]+[132] ;$
$a_{[213]}=[213]+[123] ;$	$a_{[321]}=[321]+[312]+[231]+[213]+[132]+[123]$

Theorem

The endomorphisms representing the right action by each of $t_{1}, t_{2}, \ldots, t_{n}$ are upper triangular in the descent-destroying basis. That is: $a_{w} t_{i}=\sum_{u \leq w} \lambda_{u} a_{u}$ for some total order \leq on S_{n}.

Fibonacci filtration
We define the following invariant spaces, defined for each lacunar set $I \subseteq[n-1]$:

$$
F(I):=\left\{q \in \mathbf{k}\left[S_{n}\right] \mid q s_{i}=q \text { if } i \notin I \text { and } i+1 \notin I\right\} .
$$

We set a total order on the lacunar sets with the constraint that $\operatorname{sum}(I) \leq \operatorname{sum}(J)$ whenever $I \leq J$. We index the lacunar sets:

$$
Q_{1}<Q_{2}<\ldots<Q_{f_{n+1}}
$$

$F_{i}:=\sum_{j \leq i} F\left(Q_{j}\right)$.

Theorem

The right action by any of the somewhere-to-below shuffles preserves each module F_{i}, and the shuffle t_{ℓ} acts on the quotients F_{i} / F_{i-1} as multiplication by the scalar $m_{Q_{i}, \ell}$.

Eigenvalues

Theorem

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbf{k}$. Then, the eigenvalues of the endomorphism acting on the right by $\lambda_{1} t_{1}+$ $\lambda_{2} t_{2}+\cdots+\lambda_{n} t_{n}$ are the linear combinations $\lambda_{1} m_{I, 1}+\lambda_{2} m_{I, 2}+\cdots+\lambda_{n} m_{I, n} \quad$ for $I \subseteq[n-1]$ lacunar (with known multiplicities). If all these f_{n+1} linear combinations are distinct, then the endomorphism is diagonalizable.

Card shuffling

Linear combinations of somewhere to-below shuffes have a probabilistic meaning, when the coefficient λ_{i} are nonnegative, as they model the following shuffle.

- Pick the i-th card from the top with probability to $\frac{1}{n-i+1} \cdot \frac{\lambda_{i}}{\sum_{k=1}^{n} \lambda_{k}}$
- Insert it at a position below chosen uniformly at random.

Mixing times: How many times should we shuffle?

Theorem

If $\lambda_{1} \neq 0$,

as follows

- Place a bookmark right above the bottommost card of the deck
- The bookmark itself does not move (but cards can move down past it).
- We let τ be the time it takes for the bookmark to reach the top of the deck

The distribution of the deck is uniform at time τ and any time aftervards; so τ is a strong stationary me. This stopping time is optimal
The expected number of steps to get to the strong stationary time for the random-to-below shuffle is

$$
\mathbb{E}(\tau)=\sum_{i=2}^{n} \frac{n}{i\left(H_{n}-H_{i-1}\right)} \leq n \log n+n \log (\log n)+n \log 2+1 \quad \text { if } n \geq 2,
$$

where H_{n} is the n-th harmonic number $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$.

- It means that random-to-below is slower than top-to-random
- We conjecture that the bound on $\mathbb{E}(\tau)$ is optimal for the random-to-below shuffle.

Nilpotent commutators

- The pairwise commutators $\left[t_{i}, t_{j}\right]$ in $\mathbf{k}\left[S_{n}\right]$ are nilpotent (by the upper-triangularity above) - How small is the required exponent? Much smaller than one might expect

Theorem

Let $1 \leq i \leq j \leq n$. Then, $\left[t_{i}, t_{j}\right]^{m}=0$ holds for $m=\min \{j-i+1,\lceil(n-j) / 2\rceil+1\}$
We conjecture (and have verified for all $n \leq 12$) that this choice of m is optimal (for $\mathbf{k}=\mathbb{Z}$).

More

We have

- combinatorial formulas for the multiplicities of the eigenvalues;
- a sufficient condition for diagonalizability
- eigenvalues on each Specht module;
- a conjectural q-deformation.

References

- Darij Grinberg and Nadia Lafrenière. The one-sided cycle shuffles in the symmetric group algebra, Algebraic Combinatorics, volume 7, issue 2, p. 275-326 2024.
- Darij Grinberg. Commutator nilpotency for somewhere-to-below shuffle ArXiv:2309.05340v2, 2023.

