

Summary

- We define the **somewhere-to-below shuffles**, a family of elements of the symmetric group algebra.
- These elements are **simultaneously triangularizable** in a **combinatorial basis** of the symmetric group algebra that we introduce.
- We give a filtration of $\mathbf{k}[S_n]$ -modules invariant under the somewhere-to-below shuffles.
- The **eigenvalues** of the somewhere-to-below shuffles and their linear combinations have an easy expression.
- We interpret the somewhere-to-below shuffles and their linear combination as **card shuffling** methods, and give a strong stationary time for the random-to-below shuffle.

Somewhere-to-below shuffles

• Cycles: cyc _{i1,i2} ,,i _m	1
denotes the <i>m</i> -cycle sending $i_1 \mapsto i_2 \mapsto \cdots \mapsto i_m \mapsto i_1$	2
• We look at cycles made of adjacent cards: $ ext{cyc}_{i,i+1,\dots,j}$ denotes the	3
cycle sending $i \mapsto i + 1 \mapsto \cdots \mapsto j \mapsto i$	4
• The n somewhere-to-below shuffles t_1, t_2, \ldots, t_n are	5
$t_i = \operatorname{cyc}_i + \operatorname{cyc}_{i,i+1} + \ldots + \operatorname{cyc}_{i,i+1,\ldots,n}.$	6 7
 They are called somewhere-to-below due to their card shuffling 	8
interpretation: t_i represents the act of taking the card at position i and moving it anywhere weakly below.	Figur

Right action

We view the elements of the symmetric group as *endomorphisms* of the symmetric group algebra. They act on the right (action on positions, aka right multiplication).

Linear combinations

The linear combinations of somewhere-to-below shuffles are called *one-sided cycle shuffles*. Two of them are of particular interest.

Lacunar sets

Top-to-random

Top-to-random corresponds to $-t_1$, and

has been well-studied as a card shuffling

technique. Its eigenvalues are known to be $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1\}$.

Random-to-below is the shuffle that picks a card uniformly at random, and inserts it weakly below, uniformly at random. This is

$$\frac{1}{n^2}t_1 + \frac{1}{n(n-1)}t_2 + \frac{1}{n(n-2)}t_3 + \dots + \frac{1}{n}t_n.$$

Set $[k] := \{1, 2, ..., k\}$ for any k. A *lacunar set* is a subset of [n-1] that does not contain consecutive integers.

Known fact: The number of lacunar sets of $\{1, 2, \ldots, n-1\}$ is the (n+1)-th Fibonacci number.

For a lacunar set I and an integer $\ell \in [n]$, we define the number $m_{I\ell} =$ (smallest element of $I \cup \{n+1\}$ that is $\geq \ell$) $-\ell \in [0, n]$.

Example

For n = 4, the following five subsets of $\{1, 2, 3\}$ are lacunar:

Ι	$m_{I,1}$	$m_{I,2}$	$m_{I,3}$	$m_{I,4}$
Ø	4	3	2	1
{1}	0	3	2	1
$\{2\}$	1	0	2	1
$\{3\}$	2	1	0	1
$\{1, 3\}$	0	1	0	1

The somewhere-to-below shuffles in the symmetric group and Hecke algebras

Darij Grinberg (Drexel University) and Nadia Lafrenière (Concordia University)

FPSAC 2024

Descent-destroying basis Card shuffling Linear combinations of somewhere to-below shuffles have a probabilistic meaning, when the coefficients λ_i are nonnegative, as they model the following shuffle. • Pick the *i*-th card from the top with probability to $\frac{1}{n-i+1} \cdot \frac{\lambda_i}{\sum_{k=1}^n \lambda_k}$. Des $w := \{i \in [n-1] \mid w(i) > w(i+1)\}.$ • Insert it at a position below chosen uniformly at random. $a_w := \sum w\sigma \in \mathbf{k}[S_n].$ Mixing times: How many times should we shuffle? $\sigma \in \langle s_i | i \in \text{Des} w \rangle$ Proposition Theorem If $\lambda_1 \neq 0$, then the one-sided cycle shuffle $\lambda_1 t_1 + \lambda_2 t_2 + \cdots + \lambda_n t_n$ admits a stopping time τ obtained as follows: • Place a bookmark right above the bottommost card of the deck. • The bookmark itself does not move (but cards can move down past it). $a_{[231]} = [231] + [213];$ • We let τ be the time it takes for the bookmark to reach the top of the deck. The distribution of the deck is uniform at time τ and any time afterwards; so τ is a strong stationary time. This stopping time is optimal. The expected number of steps to get to the strong stationary time for the random-to-below shuffle is $a_{[213]} = [213] + [123]; \quad a_{[321]} = [321] + [312] + [231] + [213] + [132] + [123]$ $\mathbb{E}(\tau) = \sum_{i=0}^{n} \frac{n}{i(H_n - H_{i-1})} \le n \log n + n \log(\log n) + n \log 2 + 1 \quad \text{if } n \ge 2,$ Theorem where H_n is the *n*-th harmonic number The endomorphisms representing the right action by each of t_1, t_2, \ldots, t_n are upper triangular in the • It means that random-to-below is slower than top-to-random. • We conjecture that the bound on $\mathbb{E}(\tau)$ is optimal for the random-to-below shuffle. **Fibonacci filtration** Nilpotent commutators • The pairwise commutators $[t_i, t_j]$ in $\mathbf{k}[S_n]$ are nilpotent (by the upper-triangularity above). $F(I) := \{ q \in \mathbf{k}[S_n] \mid qs_i = q \text{ if } i \notin I \text{ and } i+1 \notin I \}.$ • How small is the required exponent? Much smaller than one might expect! We set a total order on the lacunar sets with the constraint that sum $(I) \leq sum(J)$ whenever $I \leq J$. We Theorem $Q_1 < Q_2 < \ldots < Q_{f_{n+1}}.$ Let $1 \le i \le j \le n$. Then, $[t_i, t_j]^m = 0$ holds for $m = \min\{j - i + 1, \lceil (n - j)/2 \rceil + 1\}$. $F_i := \sum F(Q_j).$ We conjecture (and have verified for all $n \leq 12$) that this choice of m is optimal (for $\mathbf{k} = \mathbb{Z}$). Theorem More The right action by any of the somewhere-to-below shuffles preserves each module F_i , and the shuffle We have ... • combinatorial formulas for the multiplicities of the eigenvalues; • a sufficient condition for diagonalizability; **Eigenvalues** • eigenvalues on each Specht module; • a conjectural *q*-deformation. Theorem References Let $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbf{k}$. Then, the eigenvalues of the endomorphism acting on the right by $\lambda_1 t_1 + \lambda_2 +$ • Darij Grinberg and Nadia Lafrenière. The one-sided cycle shuffles in the $\lambda_1 m_{I,1} + \lambda_2 m_{I,2} + \dots + \lambda_n m_{I,n}$ for $I \subseteq [n-1]$ lacunar symmetric group algebra, Algebraic Combinatorics, volume 7, issue 2, p. (with known multiplicities). If all these f_{n+1} linear combinations are distinct, then the endomorphism 275-326 2024.

Definition

For each $w \in S_n$, we define the *descent set* of w to be the set

For each $i \in [n-1]$, we define the simple transposition $s_i := \operatorname{cyc}_{i,i+1} \in S_n$. For each $w \in S_n$, we define

The family $(a_w)_{w \in S_n}$ is a basis of $\mathbf{k}[S_n]$. We call it the *descent-destroying basis*. Example

For n = 3, we have

 $a_{[123]} = [123];$ $a_{[132]} = [132] + [123];$ $a_{[312]} = [312] + [132];$

descent-destroying basis. That is: $a_w t_i = \sum \lambda_u a_u$ for some total order \leq on S_n .

We define the following invariant spaces, defined for each lacunar set $I \subseteq [n-1]$:

index the lacunar sets:

Let

 t_{ℓ} acts on the quotients F_i/F_{i-1} as multiplication by the scalar $m_{Q_i,\ell}$.

 $\lambda_2 t_2 + \cdots + \lambda_n t_n$ are the linear combinations

is diagonalizable.

Ire 1: $t_3 \in S_8$

Random-to-below

• Darij Grinberg. Commutator nilpotency for somewhere-to-below shuffles. ArXiv:2309.05340v2, 2023.

$$H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}.$$

