The results of the rightmost column of this poster rely on the following isomorThe results of the rightmost column of this poster rely on the following isl
phism between the total hom complex from a perfect complex to a module

Context

Calabi-Yau objects first appeared in geometry but have come a long way since. A triangulated \mathfrak{k}-linear category \mathcal{T} with a Serre functor \mathbb{S} is said to be fractionally Calabi-Yau if there exist l, d such that \mathbb{S}^{l} is isomorphic as a functor to $[d]$. Applying this notion to incidence algebras of posets, a conjecture by Chapoton links combinatorial formulas, fractionally Calabi-Yau posets and symplectic geometry.

Chapoton's conjecture [5]

Let $\left(s_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non negative integers. Assume that for all integer n there exist integers $m, D, d_{1}, \ldots, d_{m}$ satisfying the product formula

$$
s_{n}=\prod_{i=1}^{m} \frac{D-d_{i}}{d_{i}} .
$$

Then there should exist a family of posets $\left(P_{n}\right)_{n \in N}$ with cardinals $\left|P_{n}\right|=s_{n}$ such that the bounded derived category $D^{b}\left(P_{n}\right)$ is fractionally Calabi-Yau of dimension $\frac{C}{D}$ where

$$
C=\sum_{i=1}^{m} D-2 d_{i} .
$$

Consider a quasi homogenous singularity f of degrees d_{1}, \ldots, d_{m} and total degree D. Then there should exist a geometric triangulated (Fukaya-Seidel) category \mathcal{F}_{n} associated to f which is equivalent to $D^{b}\left(P_{n}\right)$

Examples

Theorem 1 ([3, Theorem 8.3]). Let $n \in \mathbb{N}$. The bounded derived category

$D^{b}\left(\right.$ Tam $\left._{n}\right)$ is $\frac{n(n-1)}{2 n+2}$ fractionally Calabi-Yau.
Theorem 2 ([2, Theorem 4.1]). The Serre functor has finite order on the Grothendieck group of the incidence algebra \mathcal{A} of the poset of order ideals $J\left(P_{m, n}\right)$ of a grid poset $P_{m, n}$.

References

[1] Osamu lyama. "Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcat gories." In: Adv. Math. 210.1 (2007), pp. 22-50. ISSN: 0001-8708. DoI: 10. 1016/j . aim. 2006 06.002.
[2] Emine Yldrm. "The Coxeter transformation on cominuscule posets". In: Algebr. Represent. The ory 22.3 (2019), pp. 699-722. ISSN: 1386-923X; 1572-9079/e.
3] Baptiste Rognerud. "The bounded derived categories of the Tamari lattices are fractionally CalabiYau". In: Adv. Math. 389 (2021), p. 31. ISSN: 0001-8708. DoI: $10.1016 / \mathrm{j}$. aim. 2021.107885. 44 Osamu Iyama and René Marczinzik. "Distributive lattices and Auslander regular algebras". In: Ad
Math. 398 (2022). Id/No 108233, p. 27. ISSN: 0001-8708. Doi: 10.1016/j . a im. 2022. 108233. Fréd́ric Chapoton Posets and Fractional Calabi Yau Categories 2023 arYiv 2303.1165 [5] Frédéric Cl
6 Ilaria Di Dedda. Symplectic higher Auslander correspondence for type A. 2024 arXiv: 2311. 16859.

Order ideals of the product of two chains

We denote this lattice $J_{m, n}$ and there is an isomorphism of lattices $J_{m, n} \underset{\longleftrightarrow}{\sim}\left\{\left(a_{1}, \ldots, a_{m}\right) \mid\right.$ non decreasing in $\left.\llbracket 0, n \rrbracket\right\}$

$$
\Rightarrow\left|J_{m, n}\right|=\binom{m+n}{m}=\frac{m+n}{1} \times \cdots \times \frac{n+1}{m} .
$$

Product formula with

$D=m+n+1$
Antichains in $J_{m, n}$
For each $\alpha \in J_{m, n}$ we construct an antichain C_{α}. Denote \mathcal{P}_{α} its object in $D^{b}\left(J_{m, n}\right)$.
 The Calabi-Yau di-
mension matches the $D^{b}\left(J_{m, n}\right)$ is fractionally Calabi-Yau prediction

Proposition 1. $\mathbb{S}^{m+n+1}\left(\mathcal{P}_{\alpha}\right) \cong \mathcal{P}_{\alpha}[m n]$.

Proposition 2. The antichain C_{α} is boolean and in particular strong
$\Rightarrow D^{b}\left(J_{m, n}\right)$ is $\frac{m n}{m+n+1}$-Calabi-Yau.

Towards a geometric model
Higher Auslander Algebras of type A have a geometric model which seems to fit Chapoton's prediction $[6]$. This gives a first example which corroborates all three aspects of this surprising conjecture

From antichains to complexes

Definition 1. An antichain C of L is a set of pairwise incomparable elements of L.
Core idea (e.g.[4, Proposition 2.1])
\{antichains\} \longleftrightarrow \{submodules of $P_{\hat{1}}$ \} \longleftrightarrow \{modules with head S_{i} \}

$$
\begin{equation*}
C \longmapsto N_{C}:=\sum_{i=1}^{r} A \cdot\left(c_{i}, \hat{1}\right) \longmapsto M_{C}=P_{\mathrm{i}} / N_{C} \tag{1}
\end{equation*}
$$

M_{C}^{α} is called an antichain module. Let \mathcal{P}_{C}^{α} be its antichain projective resolution $0 \rightarrow P_{r} \rightarrow \cdots \rightarrow P_{0} \rightarrow M_{C}$ where $P_{0}=P_{1}$ and $P_{l}=\bigoplus P_{\wedge S}$ for $1 \leq l \leq r$. (2) $\underset{\substack{S \subseteq C \\|S|=l}}{ }$
With boundary maps defined by

$$
\begin{array}{rll}
P_{\wedge S} & \rightarrow \tag{3}\\
(x, \wedge S) & \mapsto\left\{\begin{array}{cl}
P_{\wedge T} & \\
(-1)^{i \mid i s}(x, \wedge T) & \text { if } T \sqcup\{i\}=S, \\
0 & \text { otherwise }
\end{array}\right.
\end{array}
$$

Note: Intervals are antichain modules

Rigidity properties

Inclusive antichain For all subsets S and S^{\prime} of C, if $\wedge S \leq \wedge S^{\prime}$ then $S^{\prime} \subseteq S$ Intersective antichain For all subsets S and S^{\prime} of C, we have $(\wedge S) \vee\left(\wedge S^{\prime}\right)=$ $\wedge\left(S \cap S^{\prime}\right)$.
Strong antichain For all S, S^{\prime} subsets of C of same cardinal, $\wedge S$ and $\wedge S^{\prime}$ are incomparable $i . e$ if $\wedge S \leq \wedge S^{\prime}$ then $S=S^{\prime}$.
Boolean antichain C is both inclusive and intersective

About the terminology: We can show that an antichain is boolean if and only if it spans a lattice that is boolean in only
L.

Upshots

Theorem 3. Let L be a finite lattice, d and l integers and $\left(C_{\alpha}\right)_{\alpha \in L}$ be a family of strong antichain modules with simple head S_{α}. If for all $\alpha \in L$ it holds that $\mathbb{S}^{l}\left(C_{\alpha}\right) \simeq C_{\alpha}[d]$, then L is $\frac{n}{m}$ - fractionally Calabi-Yau.
Theorem 4. Let C be a boolean antichain of a lattice L. Let $I \subseteq L$ be an interval. There exists at most one integer p such that $\operatorname{Hom}_{D^{b}}\left(M_{C}, I \mid p\right)$ is non zero. When such an integer exists, the hom space is one dimensional.

