Notation: Let L be a finite lattice. - For all # € L.t Py, 5. be the projective [t A NTICHAINS IN THE REPRESENTATION THEORY OF [} it o fhe risttis: colum of s posie xely on The oflowing somor

indecomposable, simple, module associated to x. - When 7T = Db(A), the bounded

derived category of an algebra A of finite global dimension over a field k, the Serre functor ... — Hom P, . M % Hom P M) —— ...
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Context Order ideals of the product of two chains From antichains to complexes

Calabi-Yau objects first appeared in geometry but have come a long way since. A Definition 1. An antichain C' of L is a set of pairwise incomparable elements of
triangulated k-linear category 7 with a Serre functor S is said to be fractionally We denote this lattice J,, ,, and there is an isomorphism of I,

Calabi- Yau if there exist [, d such that S' is isomorphic as a functor to [d]. Ap- lattices Jon < {(ai,
plying this notion to incidence algebras of posets, a conjecture by Chapoton links |
combinatorial formulas, fractionally Calabi-Yau posets and symplectic geometry. = || = (

..., Q) |non decreasing in[0, n] }. Core idea (e.g.[4, Proposition 2.1]):

m+n m+n n+ 1
> — X e X . {antichains} <—— {submodules of P;} +—— {modules with head S;}

1 m

m\ /7/ T
Product formula with C > Npo = ZA - (CZ-, i) | > Mo = Pj/NO
Chapoton’s conjecture [5] D=m+n+l =

T

(1)

Antichains in ijn Mg 1s called an antichain module. Let Pg be 1ts antzcﬁcin projective resolution

Let (s,)neny be a sequence of non negative integers. Assume that for all integer n 0—= P — -+ — B — Mg where iy = P; and P, = O Pygfor1 <1 <r. (2)

there exist integers m, D, d, ..., d,, satistying the product formula o _ L ScC
For each a € J,,,, we construct an antichain C,. Denote P, its object in D°(Jp, ). [S|=

o — H D —d, With boundary maps defined by
n d .
i=1 ! The bounds of the Prs  — Prr
(—D)ls(z,AT) T U{i} =S5,

0 otherwise

Then there should exist a family of posets (P,),eny with cardinals |P,| = s, such Co = 1gila)]i ‘E S 04}, The associated antichain interval [f(a), o]
that the bounded derived category D(P,) is fractionally Calabi-Yau of dimension & g module is an interval RN (5’7 NS ) =

m with minimum f(«)|2,
C=>"D-2d. boo Proposition 2.13]
i=1

D ¢
where e

D

o
N2

%

Note: Intervals are antichain modules

Consider a quasi homogenous singularity f of degrees d;,...,d,, and total degree
D. Then there should exist a geometric triangulated (Fukaya-Seidel) category F, ngldlty propertles

associated to f which is equivalent to D*(P,)
The Calabi—Yau di- b . . .
mension matches the D (J m,n) 1S fraCthﬂally Calabi—Yau Inclusive antichain For all subsets S and S" of C, if AS < AS" then 8" C S

prediction Intersective antichain For all subsets S and S’ of C', we have (AS) V (AS") =

Examples NSNS,

Proposition 1.S"""(P,) = P,[mn]. o , | |
Theorem 1 ([3, Theorem 8.3]). Let n € N. The bounded derived category Proposition 2. The antichain C,, is boolean and in particular strong Strong antichain For all S, 5" subsets of C' of same cardinal, AS and AS" are

DV(Tam,) nln_1) fractionally Calabi-Y, = | Ry incomparable 7.e if AS < AS’ then S = 5.

amy,,) 1S ractiona atadl- Yau. o mn__ 1— , ) . . . . . .
2nt2 7/ | = D'(Jmn) is 1 AT A Boolean antichain C is both inclusive and intersective.

Theorem 2 (|2, Theorem 4.1]). The Serre functor has finite order on the

Grothendieck group of the incidence algebra A of the poset of order ideals Theorem B applies Intersective
J(Pnn) of a grid poset Py, . About the terminology: We can
Change of basis inclusive show that an antichain is boolean if and

emma | only it it spans a lattice that is boolean in
strong T

We give a presentation by generators and relations for the
category spanned by the objects P, and their shifts. By
doing a sort of change of basis in the derived category
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Fig. 3: Properties of antichains
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Theorem 4. Let C be a boolean antichain of a lattice L. Let I C L be an
interval. There exists at most one integer p such that Hompi(Mc, I|p]) is non
zero. When such an integer exists, the hom space 1s one dimensional.

Chapoton’s prediction[6]. This gives a first example which corroborates all three
aspects of this surprising conjecture.
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