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Context

Calabi-Yau objects first appeared in geometry but have come a long way since. A
triangulated k-linear category T with a Serre functor S is said to be fractionally
Calabi-Yau if there exist l, d such that Sl is isomorphic as a functor to [d]. Ap-
plying this notion to incidence algebras of posets, a conjecture by Chapoton links
combinatorial formulas, fractionally Calabi-Yau posets and symplectic geometry.

Chapoton’s conjecture [5]

Let (sn)n∈N be a sequence of non negative integers. Assume that for all integer n
there exist integers m,D, d1, . . . , dm satisfying the product formula

sn =

m∏
i=1

D − di
di

.

Then there should exist a family of posets (Pn)n∈N with cardinals |Pn| = sn such
that the bounded derived category Db(Pn) is fractionally Calabi-Yau of dimension C

D

where

C =

m∑
i=1

D − 2di.

Consider a quasi homogenous singularity f of degrees d1, . . . , dm and total degree
D. Then there should exist a geometric triangulated (Fukaya-Seidel) category Fn

associated to f which is equivalent to Db(Pn)

Examples

Theorem 1 ([3, Theorem 8.3]). Let n ∈ N. The bounded derived category

Db(Tamn) is
n(n−1)
2n+2 fractionally Calabi-Yau.

Theorem 2 ([2, Theorem 4.1]).The Serre functor has finite order on the
Grothendieck group of the incidence algebra A of the poset of order ideals
J(Pm,n) of a grid poset Pm,n.
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Order ideals of the product of two chains

We denote this lattice Jm,n and there is an isomorphism of
lattices Jm,n

∼
←→ {(a1, . . . , am)|non decreasing inJ0, nK}.

⇒ |Jm,n| =
(
m + n

m

)
=

m + n

1
× · · · × n + 1

m
.

m
n

Antichains in Jm,n

For each α ∈ Jm,n we construct an antichain Cα. Denote Pα its object in Db(Jm,n).

Cα = {qi(α)|i ∈ Sα}

q2

q3

q4

q5
⇝

The associated antichain
module is an interval
with minimum f (α)[2,
Proposition 2.13]

⇝

The bounds of the
interval [f (α), α]

Db(Jm,n) is fractionally Calabi–Yau

Proposition 1.Sm+n+1(Pα) ∼= Pα[mn].

Proposition 2.The antichain Cα is boolean and in particular strong

⇒ Db(Jm,n) is
mn

m+n+1-Calabi–Yau.

Change of basis

We give a presentation by generators and relations for the
category spanned by the objects Pα and their shifts. By
doing a sort of change of basis in the derived category
we find an algebra which is derived equivalent to Jm,n: the
Higher Auslander Algebra of type An−1

m+1. It is a well known
object in higher representation theory[1]. Object T

Zero relation

-
& L

-

Towards a geometric model

Higher Auslander Algebras of type A have a geometric model which seems to fit
Chapoton’s prediction[6]. This gives a first example which corroborates all three
aspects of this surprising conjecture.

From antichains to complexes

Definition 1.An antichain C of L is a set of pairwise incomparable elements of
L.

Core idea (e.g.[4, Proposition 2.1]):

{antichains} {submodules of P1̂} {modules with head S1̂}

C NC :=

r∑
i=1

A · (ci, 1̂) MC = P1̂/NC

(1)

Mα
C is called an antichain module. Let Pα

C be its antichain projective resolution

0→ Pr → · · · → P0→MC where P0 = P1̂ and Pl =
⊕
S⊆C
|S|=l

P∧S for 1 ≤ l ≤ r. (2)

With boundary maps defined by

P∧S → P∧T(
x,∧S

)
7→

{
(−1)|i|S

(
x,∧T

)
if T ⊔ {i} = S,

0 otherwise

(3)

Note: Intervals are antichain modules

Rigidity properties

Inclusive antichainFor all subsets S and S ′ of C, if ∧S ≤ ∧S ′ then S ′ ⊆ S

Intersective antichainFor all subsets S and S ′ of C, we have (∧S) ∨ (∧S ′) =
∧(S ∩ S ′).

Strong antichainFor all S, S ′ subsets of C of same cardinal, ∧S and ∧S ′ are
incomparable i.e if ∧S ≤ ∧S ′ then S = S ′.

Boolean antichainC is both inclusive and intersective.

intersective

inclusive

strong

boolean
Lemma

Fig. 3: Properties of antichains

About the terminology: We can
show that an antichain is boolean if and
only if it spans a lattice that is boolean in
L.

Upshots

Theorem 3.Let L be a finite lattice, d and l integers and (Cα)α∈L be a family
of strong antichain modules with simple head Sα. If for all α ∈ L it holds that
Sl(Cα) ≃ Cα[d], then L is n

m- fractionally Calabi–Yau.

Theorem 4. Let C be a boolean antichain of a lattice L. Let I ⊆ L be an
interval. There exists at most one integer p such that HomDb(MC, I [p]) is non
zero. When such an integer exists, the hom space is one dimensional.

Notation: Let L be a finite lattice. - For all x ∈ L, let Px, Sx, be the projective
indecomposable, simple, module associated to x. - When T = Db(A), the bounded
derived category of an algebra A of finite global dimension over a field k, the Serre functor
is S = −⊗LA DA, the derived Nakayama functor. - Let [d] denote the suspension functor
applied d times.
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The Calabi–Yau di-
mension matches the
prediction

Product formula with
D = m + n + 1
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The results of the rightmost column of this poster rely on the following isomor-
phism between the total hom complex from a perfect complex to a module.

. . . HomA(
⊕
x∈Sn

Px,M) HomA(
⊕

x∈Sn+1

Px,M) . . .

. . .
⊕
x∈Sn

exM
⊕

x∈Sn+1

exM . . .

∂∗n+1

Theorem 3 applies

Theorem 4 applies
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