

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Centre de Formació Interdisciplinària Superior

Definition and characterizations

Definition

An integer partition $\tau = \tau_1 \tau_2 \dots \tau_k$ is **tri**angular if its Ferrers diagram consists of the points in \mathbb{N}^2 that lie on or below the line that passes through (0, s) and (r, 0) for some $r, s \in \mathbb{R}_{>0}$, called a **cutting line**.

 $\Delta = \text{set of all triangular partitions},$ $\Delta(n) = \text{set of triangular partitions of size } n.$

Definition

A cell of $\tau \in \Delta$ is **removable** if removing it from τ yields a triangular partition. A cell of the complement $\mathbb{N}^2 \setminus \tau$ is **addable** if adding it to τ yields a triangular partition.

Lemma (Bergeron, Mazin [2])

Every nonempty triangular partition has either one removable cell and two addable cells, two removable cells and one addable cell, or two removable cells and two addable cells.

$\operatorname{Conv}(S) = \operatorname{convex} \operatorname{hull} \operatorname{of} S \subseteq \mathbb{N}^2.$

Proposition ([4])

A partition λ is triangular if and only if $\operatorname{Conv}(\lambda) \cap \operatorname{Conv}(\mathbb{N}^2 \setminus \lambda) = \emptyset$.

Proposition ([4])

Two cells in $\tau \in \Delta$ are removable if and only if they are consecutive vertices of $Conv(\tau)$ and the line passing through them does not intersect $\operatorname{Conv}(\mathbb{N}^2 \setminus \tau)$.

The triangular Young poset

 \mathbb{Y}_{Δ} = poset of triangular partitions ordered by containment of their Ferrers diagrams.

Lemma (Bergeron, Mazin [2])

Let $\tau, \nu \in \mathbb{Y}_{\Delta}$ such that $\tau < \nu$. Then, $\tau \lessdot \nu$ if and only if τ is obtained from ν by removing exactly one cell. In particular, \mathbb{Y}_{Δ} is ranked by the size of the partitions.

Lemma (Bergeron, Mazin [2])

The poset \mathbb{Y}_{Δ} has a planar Hasse diagram, and it is a lattice.

Proposition ([4])

The join and the meet of $\tau, \nu \in \mathbb{Y}_{\Delta}$ are given by

 $\tau \vee \nu = \mathbb{N}^2 \cap \operatorname{Conv}(\tau \cup \nu) \quad \text{and} \quad \tau \wedge \nu = \mathbb{N}^2 \setminus \left(\mathbb{N}^2 \cap \operatorname{Conv}\left(\mathbb{N}^2 \setminus (\tau \cap \nu)\right)\right).$

Combinatorial properties of triangular partitions

Sergi Elizalde¹ and Alejandro B. Galván²

Dartmouth College¹, Centre de Formació Interdisciplinària Superior – Universitat Politècnica de Catalunya²

FPSAC 2024, Ruhr-Universität Bochum

$$= I(\sigma^{\ell}) - I(\sigma^{\ell-1}) = |\mathcal{B}_{\ell}| - 1.$$

$$=1+\sum_{i=1}^{\ell}\binom{\ell-i+2}{2}\varphi(i).$$