Sergi Elizalde ${ }^{1}$ and Alejandro B. Galván ${ }^{2}$

Dartmouth College ${ }^{1}$, Centre de Formació Interdisciplinària Superior - Universitat Politècnica de Catalunya ${ }^{2}$

Definition and characterizations

Definition

An integer partition $\tau=\tau_{1} \tau_{2} \ldots \tau_{k}$ is triangular if its Ferrers diagram consists of the points in \mathbb{N}^{2} that lie on or below the line that passes through $(0, s)$ and $(r, 0)$ for some $r, s \in \mathbb{R}_{>0}$, called a cutting line.

$\Delta=$ set of all triangular partitions,
$\Delta(n)=$ set of triangular partitions of size n.

Definition

A cell of $\tau \in \Delta$ is removable if removing it from τ yields a triangular partition. A cell of the complement $\mathbb{N}^{2} \backslash \tau$ is addable if adding it to τ yields a triangular partition.

Lemma (Bergeron, Mazin [2])

Every nonempty triangular partition has either one removable cell and two addable cells, two removable cells and one addable cell, or two removable cells and two addable cells.
$\operatorname{Conv}(S)=$ convex hull of $S \subseteq \mathbb{N}^{2}$

The triangular Young poset
$\mathbb{Y}_{\Delta}=$ poset of triangular partitions ordered by containment of their Ferrers diagrams.

Lemma (Bergeron, Marin [2])	
Let $\tau, \nu \in \mathbb{Y}_{\Delta}$ such that $\tau<\nu$. Then, $\tau \lessdot \nu$ if and only if τ is obtained from ν by removing exactly one cell. In particular, \mathbb{Y}_{Δ} is ranked by the size of the partitions.	
Lemma (Bergeron, Marin [2])	
The poset \mathbb{Y}_{Δ} has a planar Hasse diagram, and it is a lattice.	
Proposition ([4])	
The join and the meet of $\tau, \nu \in \mathbb{Y}_{\Delta}$ are given by$\tau \vee \nu=\mathbb{N}^{2} \cap \operatorname{Conv}(\tau \cup \nu) \quad \text { and } \quad \tau \wedge \nu=\mathbb{N}^{2} \backslash\left(\mathbb{N}^{2} \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash(\tau \cap \nu)\right)\right) .$	

Bijections to balanced words

Definition

A binary word $w=w_{1} \ldots w_{\ell}$ is balanced if for any $h \leq \ell$ and $i, j \leq \ell-h+1$, $\left|\left(w_{i}+w_{i+1}+\cdots+w_{i+k-1}\right)-\left(w_{j}+w_{j+1}+\cdots+w_{j+k-1}\right)\right| \leq 1$.
$\mathcal{B}_{\ell}=$ set of balanced words of length ℓ.
Theorem (Lipatov $[5])$
The number of balanced words of length ℓ is $\left|\mathcal{B}_{\ell}\right|=1+\sum_{i=1}^{\ell}(\ell-i+1) \varphi(i)$.
A triangular partition is wide if all its parts are distinct. Given a wide triangular partition $\tau=\tau_{1} \ldots \tau_{k}$, define the binary word
$\omega(\tau)=10^{\tau_{1}-\tau_{2}-1} 10^{\tau_{2}-\tau_{3}-1} \ldots 10^{\tau_{k-1}-\tau_{k}-1} 10^{\tau_{k}-1}$
Proposition ([4])
For every $k, \ell \geq 1$, the map ω is a bijection between the set of wide triangular partitions with k parts and first part equal to ℓ, and the set of balanced words of length ℓ with k ones that start with 1.
$\mathcal{B}^{0}=$ set of balanced words with at least
one 0 . For $\tau=\tau_{1} \ldots \tau_{k} \in \mathcal{W}$, define
$\mathcal{D}(\tau)=\left\{\tau_{1}-\tau_{2}, \tau_{2}-\tau_{3}, \ldots, \tau_{k-1}-\tau_{k}\right\}$,
$\mathcal{D}(\tau)=\left\{\tau_{1}-\tau_{2}, \tau_{2}-\tau_{3}, \ldots, \tau_{k-1}\right.$
$\min (\tau)=\tau_{2}, \quad \operatorname{dif}(\tau)=\min \mathcal{D}(\tau)$,
$\min (\tau)=\tau_{k}, \operatorname{dif}(\tau)=$
$\operatorname{wrd}(\tau)=w_{1} \ldots w_{k-1}$,
$\operatorname{wrd}(\tau)=w_{1} \ldots w_{k-1}$,
where $w_{i}=\tau_{i}-\tau_{i+1}-\operatorname{dif}(\tau)$.

The map $\chi=(\min , d i f$, wrd $)$ is a bijection between \mathcal{W} and the set
$\mathcal{T}=\left\{(m, d, w) \in \mathbb{N} \times \mathbb{N} \times \mathcal{B}^{0} \mid m \leq d+1 ; w 1 \in \mathcal{B}^{0}\right.$ if $\left.m=d+1\right\}$. Its inverse is given by the map
$\xi\left(m, d, w_{1} \ldots w_{k-1}\right)=\tau_{1} \ldots \tau_{k}, \quad$ where $\tau_{i}=m+\sum_{j=i}^{k-1}\left(w_{j}+d\right)$ for $i \in[k]$.
Additionally, given $\tau \in \mathcal{W}$ with image $\chi(\tau)=(m, d, w)$, its size is

$$
|\tau|=k m+\binom{k}{2} d+\sum_{i=1}^{k-1} i w_{i} .
$$

Efficient enumeration

Enumeration algorithm to compute $|\Delta(n)|$ for $1 \leq n \leq N$ (available at [1]):

1. On input N, run a depth first search through
the tree of balanced words of length up to the tree
$\lfloor\sqrt{2 N}\rfloor$.
2. For each word, find all values $m, d \in \mathbb{N}$ such that $(m, d, w) \in \mathcal{T}$, as defined in (1), and such that the size function in (2) is at most N.
3. Each triplet (m, d, w) accounts for triangular
 partition $\tau=\chi(m, d, w)$ and its conjugate Complexity: $\mathcal{O}\left(N^{5 / 2}\right)$. It allows us to compute the first 10^{5} values of $|\Delta(n)|$, compared to the 39 terms known previously. The plot shows $|\Delta(n)| /(n \log n)$, giving experimental evidence for the following result:

Theorem (Corteel et al. [3])
There exist c, c^{\prime} such that $c n \log n<|\Delta(n)|<c^{\prime} n \log n$ for all $n>1$.

Triangular subpartitions

$I\left(\sigma^{\ell}\right)=$ number of triangular subpartitions of the staircase of ℓ parts
$\Delta^{\ell \times \ell}=$ set of triangular partitions inside a square of side ℓ.
Lemma ([4])
The number of triangular partitions of width exactly ℓ and height at most ℓ is $\left|\mathcal{B}_{\ell}\right| / 2$, and

$$
\left|\Delta^{\ell \times \ell} \backslash \Delta^{(\ell-1) \times(\ell-1)}\right|=I\left(\sigma^{\ell}\right)-I\left(\sigma^{\ell-1}\right)=\left|\mathcal{B}_{\ell}\right|-1
$$

Theorem ([4])

$$
\left|\Delta^{\ell \times \ell}\right|=I\left(\sigma^{\ell}\right)=1+\sum_{i=1}^{\ell}\binom{\ell-i+2}{2} \varphi(i) .
$$

We also have a direct combinatorial proof of this theorem, from which we derive as a byproduct a new proof of Lipatov's enumeration theorem for balanced words.

References

[1] Code available at https://math.dartmouth.edu/~sergi/tp.
[2] Francois Bergeron and Mikhail Mazin. "Combinatorics of triangular partitions". In: Enumer Comb. Appl. 3.1 (2023), Paper No. S2R1, 20.
[3] Sylvie Corteel, Gaël Rémond, Gilles Schaeffer, and Hugh Thomas. "The Number of Plane Corner
Cuts". In: Advances in Applied Mathematics 23.1 (1999), pp. 4953.
[4] Sergi Elizalde and Alejandro B Galván. "Triangular partitions: enumeration, structure, and gener ation". In: arXiv preprint arXiv:2312.16353 (2023)
5] E. P. Lipatov. "On a classification of binary collections and properties of homogeneity classes"
Russian. In: Probl. Kibern. 39 (1982), pp. $67-84$.

