Shi arrangements and low elements in Coxeter groups Matthew Dyer¹ & Susanna Fishel^{2†} & Christophe Hohlweg^{3*} & Alice Mark⁴ ¹University of Notre Dame, ²Arizona State University, ³Université du Québec à Montréal, ⁴Vanderbilt University

Classical Shi arrangement

Affine \mathcal{S}_3

 A_2 generated by s_1, S_2, s_3 , which are reflections over the hyperplanes $H_{\alpha_1}, H_{\alpha_2}, H_{\alpha_3}$.

Wonderful properties

Each Shi region has a unique element closest to the origin and the collection of their inverses forms a simplex. We identify an element of the group with its alcove.

What about non-affine, non-finite Coxeter groups? Other Coxeter groups

Coxeter system

A Coxeter system is a pair (W, S)

- W is a group
- $S \subset W$ is a set of generators of W (S will be finite in this poster)

subject to the following: for every pair of generators s and s', we have an integer m(s, s') such that $(ss')^{m(s,s')} = e$, m(s,s) = 1 and $m(s,s') = m(s',s) \ge 2$ for $s \ne s'$ in S. 3 if $i \neq j$ In our example in column 1, $m(s_i, s_j) = \langle$ $s_i s_i = e$ since s_i is a reflection 1 if i = j

Standard tools for the combinatorics of Coxeter Groups

- $w \in W, s_{i_i} \in S, w = s_{i_1} s_{i_2} \cdots s_{i_k}$
- LENGTH: If k is minimal, then $s_{i_1}s_{i_2}\cdots s_{i_k}$ is a reduced expression for w and the length of w is k. Write $\ell(w) = k$. The length is the minimum number of hyperplanes crossed when travelling from \mathcal{A}_0 to $w\mathcal{A}_0$
- INVERSIONS: $\Phi(w) = \Phi^+ \cap w\Phi^- = \{\beta \in \Phi^+ | \ell(s_\beta w) < \ell(w)\}$ The inversions are the labels of the hyperplanes crossed when travelling from \mathcal{A}_0 to $w\mathcal{A}_0$
- RIGHT DESCENTS: $\text{Des}_R(w) = \{s \in S | \ell(ws) < \ell(w)\} \ ws \mathcal{A}_0 \text{ is the neighbor of } w \mathcal{A}_0$
- RIGHT DESCENT ROOTS: $\Phi^R(w) = \{-w(\alpha_s) | s \in \text{Des}_R(w)\}$ In bijection with $\text{Des}_R(w)$, they are the normals to the boundary hyperplanes for alcove $w\mathcal{A}_0$
- LEFT DESCENT: $Des_L(w) = \{s \in S | \ell(sw) < \ell(w)\}$
- LEFT DESCENT ROOTS: $\Phi^L(w) = \Phi(w) \cap \Delta$

Dominance order on roots

The dominance order [1] is the partial order \leq_{dom} on Φ^+ defined as follows: $\alpha \preceq_{\text{dom}} \beta \iff (\forall w \in W, \ \beta \in \Phi(w) \implies \alpha \in \Phi(w)).$

 $\alpha \preceq_{\text{dom}} \beta$ if for every w: if I have to hop over H_{β} to get to $w\mathcal{A}_0$, then I had to hop over H_{α} . Also, dominance can be extended to all roots.

Small roots The set of small roots is the set of positive roots that do not dominate any positive roots.

Examp

 $\tilde{A}_2: \Sigma_0 = \{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_3, \alpha_2 + \alpha_3\}, \text{ normals to the Shi hyperplanes}$

Shi arrangement and low elements

The Shi arrangement [4] $\operatorname{Shi}_0(W, S)$ is the arrangement of small hyperplanes: $\operatorname{Shi}_0(W, S) = \{ H_\beta \mid \beta \in \Sigma_0 \},\$

The small inversion set of $w \in W$ is the set:

$$\Sigma_0(w) = \Phi(w) \cap \Sigma_0.$$

The set L_0 of low elements is

$$L_0 = \{ w \in W \mid \Phi^1(w) \subseteq \Sigma \}$$

Conjecture and theorem

Conjecture from Dyer and Hohlweg[3]

Theorem 1: Mininmal elements are low

Let (W, S) be a Coxeter system.

1. Each region of $\operatorname{Shi}_{0}(W, S)$ contains a unique element of minimal length. 2. The set of the minimal length elements of $\text{Shi}_0(W, S)$ is equal to the set L_0 of low elements.

Seven small roots for the triangle group (3, 3, 4)

 $\Sigma_0\}.$

Conjecture from Hohlweg, Nadeau, Williams[4].	
Theorem 2: Low element inverses	f
Let (W, S) be a Coxeter system. The un	nio

Example

Highlights from the proof [2]

Short inversion posets Let $w \in W$ with short inversions $\alpha, \beta \in \Phi^1(w)$. We write $\alpha \prec_w \beta$ if β is not in the simple system for the maximal dihedral subgroupl containing the subgroup generated by s_{α} and s_{β} , but α is. Take the transitive and reflexive closure to form a partial order.

Fheorem 3: Sandwich theorem

 $\beta \in \Phi^1(w)$ there is $\alpha \in \Phi^L(w)$ and $\gamma \in \Phi^R(w)$ such that $\alpha \preceq_w \beta \preceq_w \gamma$.

Consider (W, S) with $S = \{1, 2, 3, 4\}$ with Coxeter graph: $4 \int 4$ This is an indefinite Coxeter system, i.e., neither finite nor affine. Let w = 1234232314, then • $\Phi(w) = \{\alpha_1, 1\alpha_2, 12\alpha_3, 123\alpha_4, 1234\alpha_2, 12342\alpha_3, 123423\alpha_2, \dots, 123423\alpha_3, 123423\alpha_2, \dots, 123423\alpha_3, \dots, 12342\alpha_3, \dots, 12342\alpha_3, \dots, 123423\alpha_3, \dots, 12342\alpha_3, \dots, 1234\alpha_3, \dots, 1234\alpha_3, \dots, 1234\alpha_3, \dots, 1234\alpha_3, \dots, 1234\alpha_3, \dots, 1234\alpha$ $1234232\alpha_3, 12342323\alpha_1, 123423231\alpha_4$ $1(\alpha_4)$ $\checkmark 31(\alpha_2)$ • $\Phi^L(w) = \{\alpha_1\}$ \downarrow 1(α_2) • $\Phi^R(w) = \{123432321(\alpha_4)\}$

- $\Phi^1(w) = \{\alpha_1, 1(\alpha_2), 31(\alpha_2), \gamma =, 1(\alpha_4), \beta\}$

Polytope Consider the set

$$\mathcal{B}_0 = \{ x^{-1}(\alpha_s) \mid x$$

The Shi polyhedron is the convex set

 \mathscr{S}_0

- 1993.
- 301:739-784, 2016.
- Algebra, 457:431–456, 2016.

[1] Brigitte Brink and Robert B. Howlett. A finiteness property and an automatic structure for Coxeter groups. Math. Ann., 296:179–190, [2] Matthew Dyer, Christophe Hohlweg, Susanna Fishel, and Alice Mark. Shi arrangements and low elements in coxeter groups, 2024. To appear in the Proceedings of the London Mathematics Socienty. [3] Matthew J. Dyer and Christophe Hohlweg. Small roots, low elements, and the weak order in Coxeter groups. Advances in Mathematics, [4] Christophe Hohlweg, Philippe Nadeau, and Nathan Williams. Automata, reduced words and Garside shadows in Coxeter groups. J. \dagger SF is supported by the Simons Collaboration Grants for Mathematicians 359602,709671. \star CH is supported by the NSERC grant Algebraic and Geometric Combinatorics of Coxeter groups.

orm a convex set on of the alcoves $w^{-1}\mathcal{A}_0$ for $w \in L_0$ is a convex set.

Let $w \in W$. For the poset $(\Phi^1(w), \preceq w)$, the minimal elements are the left-descent roots in $\Phi^{L}(w)$ and the maximal elements are the right-descent roots in $\Phi^{R}(w)$. More precisely, for any

 $x \in L_0, s \in S, sx \notin L_0\}.$

$$= \bigcap_{\beta \in \mathcal{B}_0} H_{\beta}^+$$