THE UNIVERSITY OF
ALABAMA

Forks

A fork is an abundant-two or more arrows between every pair of vertices-quiver F, where F is not acyclic and there exists a vertex r, called the point of return, such that

- For all i such that $i \rightarrow r$ and j such that $r \rightarrow j$ we have $f_{j i}>f_{i r}$ and $f_{j i}>f_{r j}$. - The full subquiver formed by removing the vertex r from F is acyclic.

Figure 1. A Fork with Point of Return 2
Every mutation-infinite quiver is mutation-equivalent to a fork, and mutating a fork at any vertex other than the point of return produces another fork [War14]. As such, a fork-preserving mutation sequence is any mutation sequence that starts with a fork and does not mutate at any point of return.

C-Matrix

To any quiver Q we can associate an skew-symmetric exchange matrix $B=B(Q)$. Consider the $n \times 2 n$ matrix $[B I]$ and any mutation sequence $\boldsymbol{w}=\left[i_{1}, \ldots, i_{\ell}\right]$. After the mutations at the indices i_{1}, \ldots, i_{ℓ} consecutively, we obtain $\left[B^{w} C^{w}\right]$. The matrix C^{w} is known as the C-matrix, and its row vectors are the c-vectors. Every c-vector has either all non-negative or all non-positive entries [DWZO8].
For example, if we mutate the quiver F in Figure 1 at $\boldsymbol{w}=[1,2,3]$, then

$$
\left[B^{\boldsymbol{w}} C^{w}\right]=\left[\begin{array}{ccc|ccc}
0 & -305 & 28 & -1 & 0 & 0 \tag{1}\\
305 & 0 & -11 & 55 & 120 & 11 \\
-28 & 11 & 0 & -5 & -11 & -1
\end{array}\right]
$$

Main Result

Let Q be a fork with n vertices, and \boldsymbol{w} be a fork-preserving mutation sequence Then every c-vector of Q obtained from \boldsymbol{w} is a solution to a quadratic equation of the form

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{2}+\sum_{1 \leq i<j \leq n} \pm q_{i j} x_{i} x_{j}=1 \tag{2}
\end{equation*}
$$

where $q_{i j}$ is the number of arrows between the vertices i and j in Q. For the quiver F in Figure 1, the quadratic equation is given by

$$
x^{2}+y^{2}+z^{2}-3 x y-5 x z+4 y z=1
$$

The row vectors of the above C-matrix satisfy this equation.

Corollary

From the proof of our main result, we found the following corollary, independently discovered by Ahmet Seven.
Let Q be a mutation-cyclic quiver with 3 vertices. Then every c-vector of Q is a solution to a quadratic equation of the form (2) with $n=3$.

Reflections

When $\boldsymbol{w}=[]$, we let r_{i} be a simple reflection in the universal Coxeter group on n generators, \mathcal{W}, for each $i \in\{1, \ldots, n\}$. For each mutation sequence \boldsymbol{w} and each $i \in\{1, \ldots, n\}$, define $r_{i}^{w} \in \mathfrak{R}$ inductively as follows:

$$
r_{i}^{w[k]}= \begin{cases}r_{k}^{w} r_{i}^{w} r_{k}^{w} & \text { if } b_{i k}^{w} c_{k}^{w}>0, \\ r_{i}^{w} & \text { otherwise. }\end{cases}
$$

Each r_{i}^{w} can be written in the form

$$
r_{i}^{w}=g_{i}^{w} s_{i}\left(g_{i}^{w}\right)^{-1}, \quad g_{i}^{w} \in \mathcal{W}, \quad i \in\{1, \ldots, n\} .
$$

Our quiver F in Figure 1 produces

$$
r_{1}^{w}=r_{1}, \quad r_{2}^{w}=r_{2} r_{1} r_{3} r_{1} r_{2} r_{1} r_{3} r_{1} r_{2}, \quad r_{3}^{w}=r_{2} r_{1} r_{3} r_{1} r_{2} .
$$

for $\boldsymbol{w}=[1,2,3]$.

Coxeter Element

Let n be any positive integer, and let Q be a fork with n vertices. For each fork-preserving mutation sequence \boldsymbol{w} from Q, we have

$$
r_{\lambda(1)}^{w} \ldots r_{\lambda(n)}^{w}=r_{\rho(1)}^{w} \ldots r_{\rho(n)}
$$

for some permutations $\lambda, \rho \in \mathfrak{S}_{n}$, where \mathfrak{S}_{n} is the symmetric group on $\{1, \ldots, n\}$ and r_{1}, \ldots, r_{n} are the initial reflections. The matrix B^{w} determines λ, and the first mutation of \boldsymbol{w} determines ρ.
The running example produces

$$
r_{1}^{w} r_{3}^{w} r_{2}^{w}=r_{3} r_{1} r_{2}
$$

for $\boldsymbol{w}=[1,2,3]$

Admissible Curves

As a corollary to the above result on reflections, we find that, for each fork-preserving mutation sequence \boldsymbol{w} from Q, there exist pairwise noncrossing and non-self-crossing admissible curves (see [LLM23]) η_{i}^{w} such that $r_{i}^{w}=\nu\left(\eta_{i}^{w}\right)$ for every $i \in\{1, \ldots, n\}$.

Generalized Intersection Matrix

The generalized intersection matrix (GIM), denoted by A, associated to an exchange matrix B is given by a linear ordering \prec of $\{1, \ldots, n\}$ and

$$
a_{i j}= \begin{cases}b_{i j} & \text { if } i \prec j, \\ 2 & \text { if } i=j, \\ -b_{i j} & \text { if } i \succ j .\end{cases}
$$

L-Matrix

Let sgn $=\{1,-1\}$ be the group of order 2 , and consider the natural group action $\operatorname{sgn} \times \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n}$ Choose an ordering \prec on $\{1, \ldots$ to fix GIM associated to an exchange matrix B, and define

$$
l_{i}^{w}=g_{i}^{w}\left(\alpha_{i}\right) \in \mathbb{Z}^{n} / \operatorname{sgn}, \quad i \in\{1, \ldots, n\},
$$

where we set $\alpha_{1}=(1,0, \ldots, 0), \ldots, \alpha_{n}=(0, \ldots, 0,1)$ and $r_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{j i} \alpha_{i}$ Then the L-matrix, L^{w}, associated to A is defined to be the $n \times n$ matrix whose $i^{\text {th }}$ row is l^{w} for $i \in\{1, \ldots, n\}$. The vectors l_{i}^{w} are called the l-vectors of A. For example, if we take the ordering $2 \prec 1 \prec 3$, the L-matrix for F from Figure 1 and $\boldsymbol{w}=[1,2,3]$ gives us

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{3}\\
55 & 120 & 11 \\
5 & 11 & 1
\end{array}\right]
$$

Relation Between L-Matrix And C-Matrix

Let Q be a fork with n vertices, and let \boldsymbol{w} be a fork-preserving mutation sequence. For each i and j in $\{1, \ldots, n\}$, we have that $\left|l_{i j}^{w}\right|=\left|c_{i j}^{w}\right|$. In other words, the entries of l-vectors are equal to the entries of c-vectors up to sign. Our running example has $l_{1}^{w}=-c_{1}^{w}, l_{2}^{w}=c_{2}^{w}$, and $l_{3}^{w}=-c_{3}^{w}$.

References

[DWZ08] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky. "Quivers with potentials and their representations : Mutations. en. In: Selecta Mathematica 14.1 (Oct. 2008), pp. 59-119. ISSN: 1420-9020. DOI: 10.1007/s00029-008-0057-9. (Visited on 11/04/2022).
LLM23] Kyu-Hwan Lee, Kyungyong Lee, and Matthew R. Mills. "Geometric description of C-vectors and real Losungen". In: Mathematisric descriphift 303 , (lors and real Los che Zeitschrift 303.2 (Jan. 2023), p. 44. ISSN: 1432-1823. DO•-10.1007/s00209-022-03180-8
[War14] Matthias Warkentin. "Exchange Graphs via Quiver Mutation". en In: Dissertation (Jan. 2014), p. 103. URL: https://d-nb.info/ 1214302807/34

