Abstract

The Chan-Robbins-Yuen polytope
(CRY,) of order n is a face of
the Birkhoff polytope of doubly
stochastic matrices that is also
a flow polytope of the directed
complete graph K1 with netflow
(1,0,0,...,0,—1). We give gener-
ating functions and explicit formu-
las for computing the f-vector of
C'RY,, as well as any flow polytope

of the complete graph having arbi-

trary (non-negative) netflow vector.

Motivation

The Chan-Robbins-Yuen poly-
tope (C'RY,) of order n is defined

as the convex hull of n-by-n permu-
tation matrices m for which m;; = 0
for 7 > ¢+ 2. (C'RY, has normal-
ized volume equal to the product of the
first n—2 Catalan numbers (Zeilberger,
1998), though a combinatorial proof of
this tact remains elusive. C'RY,, is also
a face of the Birkhoff polytope of dou-
bly stochastic matrices having dimen-
sion (g
an example of a flow polytope.

) and 2" ! vertices, and it is also
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Figure 1:Schematic of the support of matrices

appearing in the convex hull of CRY,,.

Flow Polytopes

Fix G = (V,F) a directed, acyclic
graph on the vertex set V = [n +
1] = {1,...,n + 1} and a =
(a1, ..., an, — ", a;) a netflow vec-
tor with each a; € Z. Then the Flow
polytope determined by G and a is:

Fo(a) .= {flows f: F — Ry
| net flow vertex ¢ is a; }.
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Figure 2:A directed cyclic graph and netflow
vector (left) and the corresponding flow poly-
tope (right).

Example:
1 -
F19(1,0,0,1;2) = —+ f19(1,0,0,1; 2)
i
+2f9(1,0,L;2) + f(1,1;z)

for complete graphs
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Faces of Flow Polytopes

One particularly powerful use of flow
polytopes arises from the following the-
orem:

Theorem 1. (Hille (2003); Gallo-
Sodini (1978)) The d-dimensional faces
of Fa(a) correspond to subgraphs H
of G that have 1st Betti number
(| E|—|V|+c¢) equal to d and which are
the support of an a-valid flow, where ¢
is the number of connected components

of H.
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Figure 3:1llustrating Theorem 1.

Andresen—Kjeldsen
(1976)

Faces of C'RY,, correspond to graphs in
the following set:

The f-vector of flow polytopes University of
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Reverse Compositions

. .
Every non-negative netflow vector a

determines an integer composition

revcomp(a) as follows.

Q= {H C K. |every v € V(H) lies ® Read the entries of a from right to

along a direct path from vy to v,41}

This set was first studied by Andresen—
Kjeldsen (1976) working on automata
theory. They computed [€2,| by first
enumerating the set of primitive sub-
eraphs:

QO ={H € Q,|V(H)={v,..

and H is connected }.
By Theorem 1, the f-vector of C'RY,,
is a generating function for ¢2,, keeping

track of B1(H). This leads us to define

the notion of primitive f-vectors.

Important Results

» We provide a formula for the f-vector for any flow polytope of the complete
eraph having non-negative netflow vector.

e In particular, we obtain the first-known formula for the f-vector of CRY,,.
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Figure 4:The elements of {23 grouped by first Betti number, corresponding to the f-vector (1,4, 6,4, 1)

of CRY3. The primitive f-vector is (0,1,4,4,1).

Primitive f-vectors

Definition 1. The primitive f-
vector of Flow,(a), denoted f"(a)
(or as f"(a; z) if written as a polyno-
mial) is a generating function over the
set of a-valid subgraphs of K, that
are primitive (use the entire vertex set)
keeping track of the first Betti number.
Lemma. For all n € N and non-
negative a of length n:
fae) =+ X F(bia)
L b=<a
where b < a if b can be obtained

from a by deleting some subset (possi-

bly empty) of the zeros in a and where
b| is the length of b.

Corollary. Entries of the f-vector
and primitive f-vector of C'RY,, satisfy:

£ = s (e .

Quasisymmetric
Polynomials

Definition. For o an integer compo-
sition of n with £(«) parts,

Pu(1, .. 2a) = 50 (—1)0) A
Bra
where x” = :1;?1 x x%f; . and where

the relation >~ is the standard relation
of refinement on compositions.

Note that this is very similar to
the change-of-basis formula to write a
monomial quasisymmetric function in
terms of Gessel's fundamental qua-
sisymmetric functions.

M,=%" (_1>€(5)—€(@)F5.
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n f-vector of CRY,,

2 (0,1,1)
3 (0,1,4,4,1)
4 (0,1,11,33,42,26,8, 1)

°7Un+1}

left

o Inductively create a block whenever
a new nonzero entry is encountered

® Return the tuple of sizes coming
from the list of blocks

Example: If a = (1,1,0,0,1,0,1,0),
we get blocks (0, 1), (0,1), (0,0,1), and
(1). Hence revcomp(a) = (2,2, 3,1).

Main Theorems

Theorem. For all n € N and
non-negative a of length n, let o be
the composition of n given by a =
revcomp(a). Then the primitive f-
vector of Flow,(a) written as a poly-
nomial is given by:
- 1
f(">(a; r) = —Py(z, (x +1)* =1,
xn
L+ 1) =1)
Corollary. For CRY,;:

~

Fa) = = 5 ()" (o)
hp(z+1) =1, (x+1)""—1)

where 7, (x) = 2"n|,0q1! = T2 ((z +
1)* — 1) and where hy is a complete
homogeneous symmetric polynomial.

Theorem: Let o be the integer com-
position of n given by a = revcomp(a).
Then the f-vector of Flow,,(a) written
as a Laurent polynomial is given by:

Flaiz) = —4— 3 (~ 1)~ 0 (2)
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-vector of C'RY,,

n f

1 (1,1)
2 (1,2,1)
3 (
4 (

ri=(r+1)'—(x+1)-

,4,6,4,1)
. 8,206,45, 45, 26,8, 1)
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