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Abstract

The Chan-Robbins-Yuen polytope
(CRYn) of order n is a face of
the Birkhoff polytope of doubly
stochastic matrices that is also
a flow polytope of the directed
complete graph Kn+1 with netflow
(1, 0, 0, . . . , 0,−1). We give gener-
ating functions and explicit formu-
las for computing the f -vector of
CRYn as well as any flow polytope
of the complete graph having arbi-
trary (non-negative) netflow vector.

Motivation

The Chan-Robbins-Yuen poly-
tope (CRYn) of order n is defined
as the convex hull of n-by-n permu-
tation matrices π for which πi,j = 0
for j ≥ i + 2. CRYn has normal-
ized volume equal to the product of the
first n−2 Catalan numbers (Zeilberger,
1998), though a combinatorial proof of
this fact remains elusive. CRYn is also
a face of the Birkhoff polytope of dou-
bly stochastic matrices having dimen-
sion

(
n
2
)
and 2n−1 vertices, and it is also

an example of a flow polytope.

Figure 1:Schematic of the support of matrices
appearing in the convex hull of CRYn.

Flow Polytopes

Fix G = (V,E) a directed, acyclic
graph on the vertex set V = [n +
1] = {1, . . . , n + 1} and a =
(a1, . . . , an,−

∑n
i=1 ai) a netflow vec-

tor with each ai ∈ Z. Then the Flow
polytope determined by G and a is:

FG(a) := {flows f : E → R≥0
| net flow vertex i is ai}.

Figure 2:A directed cyclic graph and netflow
vector (left) and the corresponding flow poly-
tope (right).

Example:

f (6)(1, 0, 0, 1;x) = 1
x

+f̃ (6)(1, 0, 0, 1;x)

+ 2f̃ (5)(1, 0, 1;x) + f̃ (3)(1, 1;x)

Faces of Flow Polytopes

One particularly powerful use of flow
polytopes arises from the following the-
orem:
Theorem 1. (Hille (2003); Gallo–
Sodini (1978)) The d-dimensional faces
of FG(a) correspond to subgraphs H
of G that have 1st Betti number
(|E|−|V |+c) equal to d and which are
the support of an a-valid flow, where c
is the number of connected components
of H .

Figure 3:Illustrating Theorem 1.

Andresen–Kjeldsen
(1976)

Faces of CRYn correspond to graphs in
the following set:
Ωn := {H ⊆ Kn+1 | every v ∈ V (H) lies
along a direct path from v1 to vn+1}

This set was first studied by Andresen–
Kjeldsen (1976) working on automata
theory. They computed |Ωn| by first
enumerating the set of primitive sub-
graphs:

Ω′n := {H ∈ Ωn |V (H) = {v1, . . . , vn+1}
and H is connected}.

By Theorem 1, the f -vector of CRYn
is a generating function for Ωn keeping
track of β1(H). This leads us to define
the notion of primitive f -vectors.

Important Results

•We provide a formula for the f -vector for any flow polytope of the complete
graph having non-negative netflow vector.
• In particular, we obtain the first-known formula for the f -vector of CRYn.

f (n)(x) = 1
x

+ 1
xn

n−2∑
m=0

(−1)m(1+x)mπn−m(x)·hm((x+1)1−1, . . . , (x+1)n−m−1−1).

Figure 4:The elements of Ω3 grouped by first Betti number, corresponding to the f -vector (1, 4, 6, 4, 1)
of CRY3. The primitive f -vector is (0, 1, 4, 4, 1).

Primitive f-vectors

Definition 1. The primitive f-
vector of Flown(a), denoted f̃ (n)(a)
(or as f̃ (n)(a;x) if written as a polyno-
mial) is a generating function over the
set of a-valid subgraphs of Kn+1 that
are primitive (use the entire vertex set)
keeping track of the first Betti number.
Lemma. For all n ∈ N and non-
negative a of length n:

f (n)(a;x) = 1
x

+
∑

b�a
f̃ (|b|)(b;x)

where b � a if b can be obtained
from a by deleting some subset (possi-
bly empty) of the zeros in a and where
|b| is the length of b.
Corollary. Entries of the f -vector
and primitive f -vector ofCRYn satisfy:
f

(n)
d = ∑n−1

i=0
(
n−1
i

)
f̃

(n−i)
d .

Quasisymmetric
Polynomials

Definition. For α an integer compo-
sition of n with `(α) parts,
Pα(x1, . . . , xn) :=

∑
β�α

(−1)`(β)−`(α)xβ

where xβ := xβ1
1 · · ·x

β`(β)
`(β), and where

the relation � is the standard relation
of refinement on compositions.
Note that this is very similar to
the change-of-basis formula to write a
monomial quasisymmetric function in
terms of Gessel’s fundamental qua-
sisymmetric functions.

Mα =
∑
β�α

(−1)`(β)−`(α)Fβ.

n f̃ -vector of CRYn
2 (0, 1, 1)
3 (0, 1, 4, 4, 1)
4 (0, 1, 11, 33, 42, 26, 8, 1)

Table 1:The first few primitive f -vectors of
CRYn.

Reverse Compositions

Every non-negative netflow vector a
determines an integer composition
revcomp(a) as follows.
1 Read the entries of a from right to
left

2 Inductively create a block whenever
a new nonzero entry is encountered

3 Return the tuple of sizes coming
from the list of blocks

Example: If a = (1, 1, 0, 0, 1, 0, 1, 0),
we get blocks (0, 1), (0, 1), (0, 0, 1), and
(1). Hence revcomp(a) = (2, 2, 3, 1).

Main Theorems

Theorem. For all n ∈ N and
non-negative a of length n, let α be
the composition of n given by α =
revcomp(a). Then the primitive f -
vector of Flown(a) written as a poly-
nomial is given by:

f̃ (n)(a;x) = 1
xn
Pα(x, (x + 1)2 − 1,

. . . , (x + 1)n − 1)
Corollary. For CRYn:

f̃ (n)(x) = 1
xn

n−1∑
m=0

(−1)mπn−m(x)

·hm((x+ 1)1− 1, . . . , (x+ 1)n−m− 1)
where πn(x) := xn[n]x+1! = ∏n

i=1((x +
1)i − 1) and where hk is a complete
homogeneous symmetric polynomial.
Theorem: Let α be the integer com-
position of n given by α = revcomp(a).
Then the f -vector of Flown(a) written
as a Laurent polynomial is given by:

f (a;x) = 1
x

+ 1
xn

∑
β�α

(−1)`(α)−`(β)π`(β)(x)

· xβ−1|xi=(x+1)i−(x+1).

n f -vector of CRYn
1 (1, 1)
2 (1, 2, 1)
3 (1, 4, 6, 4, 1)
4 (1, 8, 26, 45, 45, 26, 8, 1)
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