Counting unicellular maps under cyclic symmetries

Theo Douvropoulos

Abstract

The Harer-Zagier formula is a remarkable encoding of the distribution of genus in unicellular maps It gives a simple product form for the corresponding generating function after a change of the monomial basis $\left(X^{i}\right)_{i=0}^{n}$ involving Eulerian polynomials.
Unicellular maps correspond to matchings of a polygon and carry a natural cyclic action induced by rotation. We prove generalizations of the HarerZagier formula counting maps that are fixed by given rotations; we use Steingrimmson's colored Eulerian polynomials and representation theoretic techniques. The leading terms of our formulas recover a known cyclic sieving phenomenon (CSP) for noncrossing matchings.

Unicellular maps are matchings
There are 5 orbits of the 15 matchings of a hexagon
(1)

$$
\begin{aligned}
& \operatorname{Sym}=\mathbb{Z}_{3}, \quad \#=2 \\
& g=0, V=4 \\
& d_{3}=0 \\
& v_{3}=1
\end{aligned}
$$

$$
\begin{aligned}
& v_{3}=1 \\
& \left\{u_{1}\right\},\left\{u_{2}, u_{3}, u_{4}\right\}
\end{aligned}
$$

Sym $=\mathbb{Z}_{2}, \#=3$ $g=0, V=4$ $d_{2}=1$ $v_{2}=2$
$\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}\right\}$

(2)
$\operatorname{Sym}=\mathbb{Z}_{2}, \#=3$ $g=1, V=2$ $d_{2}=1$
$\left\{u_{1}\right\},\left\{u_{2}\right\}$

$\operatorname{Sym}=\mathbb{Z}_{6}, \#=1$ $g=1, V=2$
$d_{2}=3, d_{3}=0$ $d_{2}=3, d_{3}=0$
$v_{2}=1, v_{3}=0$ $\left[\left\{u_{1}, u_{2}\right\}\right]\left[\left\{u_{1}\right\},\left\{u_{2}\right\}\right]$
-
$\operatorname{Sym}=\mathbb{Z}_{1}, \#=6$ $S y m=\mathbb{Z}_{1}, \#=6$
$g=1, V=2$

The Harer-Zagier formula

- A map is an embedding of a graph G on a surface such that its complement is a union of cells.
- A unicellular map with n edges corresponds to a complete matching of the sides of a $2 n$-gon.
- The genus of the resulting surface is related to the number V of vertices of G via $V=n+1-2 g$.
- The Harer-Zagier numbers $\varepsilon_{g}(n)$ count (classes of) unicellular maps with n edges and of genus g
- The normalized Eulerian polynomials $\Phi_{n}(X)$ are defined in the following two equivalent ways:

$$
\Phi_{n}(X):=\frac{\sum_{k=0}^{n-1} A(n, k) X^{k}}{(1-X)^{n+1}}=\sum_{k=0}^{\infty}(k+1)^{n} X^{k}
$$

where $A(n, k)$ are the Eulerian numbers (i.e. the numbers of permutations in S_{n} with k descents).

- The Harer-Zagier formula below gives a simpler form for the generating function

$$
\sum_{g \geq 0} \varepsilon_{g}(n) \cdot X^{n+1-2 g}
$$

after the substitution (base change) $X^{k} \leftrightarrow \Phi_{k}(X)$.
Theorem (Harer-Zagier) The numbers $\varepsilon_{g}(n)$ that count unicellular maps with n edges satisfy

$$
\sum_{g \geq 0} \varepsilon_{g}(n) \cdot \Phi_{n+1-2 g}(X)=(2 n-1)!!\cdot \frac{(1+X)^{n}}{(1-X)^{n+2}}
$$

Unicellular maps with $n=3$ edges

- In the first column we have listed all 15 matchings of a $(2 \cdot 3)$-gon. From that data we can write:

$$
\sum_{g \geq 0} \varepsilon_{g}(3) \cdot X^{3+1-2 g}=5 X^{4}+10 X^{2}
$$

- The Eulerian polynomials give us
$\Phi_{2}(X)=\frac{1+X}{(1-X)^{3}}, \Phi_{4}(X)=\frac{1+11 X+11 X^{2}+X^{3}}{(1-X)^{5}}$.
- To verify the formula we compute

$$
5 \cdot \Phi_{4}(X)+10 \cdot \Phi_{2}(X)=
$$

$\frac{5+55 X+55 X^{2}+5 X^{3}}{(1-X)^{5}}+\frac{10-10 X-10 X^{2}+10 X^{3}}{(1-X)^{5}}=$
$15 \cdot \frac{1+3 X+3 X^{2}+X^{3}}{(1-X)^{5}}$.

Generalized Harer-Zagier numbers
We wish to study symmetric unicellular maps; i.e (complete) matchings $\boldsymbol{\pi}$ of a $2 n$-gon that are invariant under some power of the rotation $\Psi:=e^{2 \pi i / 2 n}$.
For any pair of numbers $m>1, N \geq 1$ such that $m N=2 n$ and $\Psi^{N}(\boldsymbol{\pi})=\boldsymbol{\pi}$ (i.e. $\boldsymbol{\pi}$ has at least m-fold symmetry) we define statistics:

- $v_{m}(\boldsymbol{\pi})$ is the number of free (hence, of size m) Ψ^{N}-orbits of vertices of the $2 n$-gon
- For m even, $d_{m}(\boldsymbol{\pi})$ is the number of size $=m / 2$ Ψ^{N}-orbits of centrally symmetric (i.e. connecting sides i and $n+i$ of the $2 n$-gon) pairs of the matching. [[For m odd, $\left.d_{m}(\boldsymbol{\pi})=0\right]$]
The generalized Harer-Zagier numbers $\varepsilon_{d, v}(m, N)$ count the (complete) matchings $\boldsymbol{\pi}$ of the $2 n$-gon such that $\Psi^{N}(\boldsymbol{\pi})=\boldsymbol{\pi}, v_{m}(\boldsymbol{\pi})=v$, and $\left.d_{m}(\boldsymbol{\pi})=d\right)$.

Main Theorem and Example

The normalized, colored Eulerian polynomials $\Phi_{m, N}(X)$ are defined in the following two equivalent ways:
$\Phi_{m, N}(X)=\frac{\sum_{k=0}^{N} A(m, N, k) X^{k}}{(1-X)^{N+1}}=\sum_{k=0}^{\infty}(m k+1)^{N} X^{k}$, where $A(m, N, k)$ is the number of Steingrimmson's m-colored N-permutations with k descents.
Theorem (D.) With notations $(m, N), \Phi_{m, N}(X)$, the numbers $\varepsilon_{d, v}(m, N)$ may be calculated via

$$
\begin{gathered}
\sum_{v \geq 0} \varepsilon_{d, v}(m, N) \cdot \Phi_{m, v}(X)= \\
\binom{N}{d}(N-d-1)!!m^{\frac{N-d}{2}} \cdot \frac{1}{1-X}\left(\frac{1+X}{1-X}\right)^{\frac{N-d}{2}+\mathbf{1}_{m=2}},
\end{gathered}
$$

For example, for $m=2, N=3$ the first column lists 7 matchings $\boldsymbol{\pi}$ that satisfy $\Psi^{N}(\boldsymbol{\pi})=\boldsymbol{\pi} ;$ six with $d_{2}(\boldsymbol{\pi})=$ 1 and one with $d_{2}(\boldsymbol{\pi})=3$.

- For $d=1$, we have $\sum_{v>0} \varepsilon_{1, v}(2,3) \cdot X^{v}=3 X^{2}+3$.
- The colored Eulerian polynomials give us $\Phi_{2,2}(X)=\frac{1+6 X+X^{2}}{(1-X)^{3}}$, while $\Phi_{2,0}(X)=\frac{1}{1-X}$
- $3 \cdot \Phi_{2,2}(X)+3 \cdot \Phi_{2,0}(X)=\frac{6}{1-X}\left(\frac{1+X}{1-X}\right)^{2}$

Proof Ideas building on Zagier

- A unicellular map $\boldsymbol{\pi}$ can be identified with a factorization $\sigma \alpha c=\mathbf{1}$ in $S_{2 n}$, where σ is the fixed point free involution corresponding to the matching, c is the long cycle ($123 \cdots 2 n$) and the number of vertices V equals the number of cycles of α. - The third map in the first column corresponds to
$(14)(26)(35) \cdot(1245)(36) \cdot(123456)=1$.
- Zagier's second proof of the Harer-Zagier formula utilizes the Frobenius lemma, which turns our generating function into a character sum in $S_{2 n}$:

$$
\sum_{g \geq 0} \varepsilon_{g}(n) X^{n+1-2 g}=
$$

$$
\frac{(2 n-1)!!}{(2 n)!} \cdot \sum_{\chi \in \widehat{S_{2 n}}}^{g \geq 0} \chi(\sigma) \chi(c) \cdot \tilde{\chi}\left(\sum_{w \in S_{2 n}} w X^{\operatorname{cy}(w)}\right) .
$$

- It can be rewritten via Jucys-Murphy elements, and the sum

$$
\sum_{w \in S_{2}, 1} w X^{\operatorname{cyc}(w)}=X\left(X+J_{2}\right)\left(X+J_{3}\right) \cdots\left(X+J_{2 n}\right)
$$

has normalized character values that are binomials in X - Such binomials in X are related via a change of basis to the Eulerian polynomials or $\Phi_{n}(X)$:

$$
\begin{aligned}
& \sum_{k=1}^{n} \varepsilon_{k} X^{k}=\sum_{k=1}^{n} b_{k}\binom{X+n-k}{k} \quad \mathrm{iff} \\
& (1-X)^{n+1} \sum_{k=1}^{n} \varepsilon_{k} \Phi_{k}(X)=\sum_{k=1}^{n} b_{k} X^{k-1}
\end{aligned}
$$

- Only the hook characters χ_{k} are non-zero on c and

$$
\sum_{\chi \in \widehat{S_{2 n}}} \chi(\sigma) \chi(c) X^{\frac{\alpha}{2 n}}=\sum_{k=0}^{2 n-1} \chi_{k}(\sigma)(-1)^{k} X^{k},
$$

equals the characteristic polynomial of a fixed point free involution σ, namely $(1-X)^{n-1} \cdot(1+X)^{n}$.

- Symmetric unicellular maps correspond to factorizations $\sigma \alpha c=1$ fixed under simulateneous conjugation by c^{N}. These become factorizations of a Coxeter element in the group $G(m, 1, N)$ of m-colored N-permutations.
- All above ideas generalize almost directly in $G(m, 1, N)$
- Fixed point free involutions break in many conjugacy classes in - Fixed point free involutions break in many conjugacy classes in
$G(m, 1, N)$ and must be distinguished by the statistic $d_{(}(\boldsymbol{\pi})$. The topological genus g must be replaced by the combinatorial the combinatoria statistic $v_{m}(\boldsymbol{\pi})$.

References
[1] S. K. Lando, A. K. Zvonkin. Graphs on Surfaces and Their er, 2004

