

Abstract

The Harer-Zagier formula is a remarkable encoding of the distribution of genus in unicellular maps. It gives a simple product form for the corresponding generating function after a change of the monomial basis $(X^i)_{i=0}^n$ involving Eulerian polynomials.

Unicellular maps correspond to matchings of a polygon and carry a natural cyclic action induced by rotation. We prove generalizations of the Harer-Zagier formula counting maps that are fixed by given rotations; we use Steingrimmson's colored Eulerian polynomials and representation theoretic techniques. The leading terms of our formulas recover a known cyclic sieving phenomenon (CSP) for noncrossing matchings.

Unicellular maps are matchings

There are 5 orbits of the 15 matchings of a hexagon:

 $u_1 \quad 1$ u_2 \underline{A} u_3 u_1 1 $u_1 \quad 1 \quad u_2$ \underline{A} u_2 u_1 2 $u_1 \quad 1 \quad u_1$ u_1 $\underline{4}$ u_1 3 $u_1 \quad 1 \quad u_2$ u_2 u_1 4 u_1 1 u_2 $u_2 \quad \underline{4} \quad u_2$ 5

 $Sym = \mathbb{Z}_3, \ \# = 2$ g = 0, V = 4 $d_{3} = 0$ $v_3 = 1$ $\{u_1\}, \{u_2, u_3, u_4\}$

 $Sym = \mathbb{Z}_2, \ \# = 3$ g = 0, V = 4 $d_2 = 1$ $v_2 = 2$ $\{u_1, u_2\}, \{u_3, u_4\}$

 $Sym = \mathbb{Z}_2, \ \# = 3$ g = 1, V = 2 $d_2 = 1$ $v_2 = 0$ $\{u_1\}, \{u_2\}$

Sym = \mathbb{Z}_6 , # = 1g = 1, V = 2 $d_2 = 3, \ d_3 = 0$ $v_2 = 1, v_3 = 0$ $\begin{bmatrix} \{u_1, u_2\} \end{bmatrix} \begin{bmatrix} \{u_1\}, \{u_2\} \end{bmatrix}$

 $Sym = \mathbb{Z}_1, \ \# = 6$ g = 1, V = 2

Counting unicellular maps under cyclic symmetries

Theo Douvropoulos

Brandeis University, Department of Mathematics, Waltham, MA

The Harer-Zagier formula

- A map is an embedding of a graph G on a surface such that its complement is a union of *cells*.
- A unicellular map with n edges corresponds to a complete matching of the sides of a 2n-gon.
- The genus of the resulting surface is related to the number V of vertices of G via V = n + 1 - 2q.
- The Harer-Zagier numbers $\varepsilon_q(n)$ count (classes of) unicellular maps with n edges and of genus g.
- The normalized Eulerian polynomials $\Phi_n(X)$ are defined in the following two equivalent ways:

$$\Phi_n(X) := \frac{\sum_{k=0}^{n-1} A(n,k) X^k}{(1-X)^{n+1}} = \sum_{k=0}^{\infty} (k+1)^n X^k,$$

where A(n, k) are the Eulerian numbers (i.e. the numbers of permutations in S_n with k descents).

• The Harer-Zagier formula below gives a simpler form for the generating function

$$\sum_{g\geq 0}\varepsilon_g(n)\cdot X^{n+1-2g}$$

after the substitution (base change) $X^k \leftrightarrow \Phi_k(X)$.

Theorem (Harer-Zagier) The numbers $\varepsilon_q(n)$ that count unicellular maps with n edges satisfy

$$\sum_{g \ge 0} \varepsilon_g(n) \cdot \Phi_{n+1-2g}(X) = (2n-1)!! \cdot \frac{(1+X)^n}{(1-X)^{n+2}}$$

Unicellular maps with n = 3 edges

• In the first column we have listed all 15 matchings of a $(2 \cdot 3)$ -gon. From that data we can write:

$$\sum_{g \ge 0} \varepsilon_g(3) \cdot X^{3+1-2g} = 5X^4 + 10X^2.$$

• The Eulerian polynomials give us

$$\Phi_2(X) = \frac{1+X}{(1-X)^3}, \ \Phi_4(X) = \frac{1+11X+11X^2+X^3}{(1-X)^5}$$

• To verify the formula we compute

$$5 \cdot \Phi_4(X) + 10 \cdot \Phi_2(X) =$$

 $\frac{5+55X+55X^2+5X^3}{(1-X)^5} + \frac{10-10X-10X^2+10X^3}{(1-X)^5} =$ $15 \cdot \frac{1 + 3X + 3X^2 + X^3}{(1 - X)^5}.$

The normalized, colored Eulerian polynomials $\Phi_{m,N}(X)$ are defined in the following two equivalent ways:

 $\Phi_{m,N}$

where A(m, N, k) is the number of Steingrimmson's m-colored N-permutations with k descents.

Theorem (D.) With notations (m, N), $\Phi_{m,N}(X)$, the numbers $\varepsilon_{d,v}(m,N)$ may be calculated via

 $\binom{N}{d}(N)$

• Fo

• The colored Eulerian polynomials give us $- \alpha \mathbf{x} \mathbf{z} + \mathbf{x} \mathbf{z}^2$

 Φ_2

• 3

Generalized Harer-Zagier numbers

- We wish to study symmetric unicellular maps; i.e. (complete) matchings $\boldsymbol{\pi}$ of a 2*n*-gon that are invariant under some power of the rotation $\Psi := e^{2\pi i/2n}$.
- For any pair of numbers $m > 1, N \ge 1$ such that mN = 2n and $\Psi^N(\boldsymbol{\pi}) = \boldsymbol{\pi}$ (i.e. $\boldsymbol{\pi}$ has at least *m*-fold symmetry) we define statistics:
- $v_m(\pi)$ is the number of *free* (hence, of size m) Ψ^N -orbits of vertices of the 2*n*-gon.
- For m even, $d_m(\pi)$ is the number of size=m/2 Ψ^{N} -orbits of centrally symmetric (i.e. connecting) sides i and n + i of the 2n-gon) pairs of the matching. [[For m odd, $d_m(\boldsymbol{\pi}) = 0$]]
- The generalized Harer-Zagier numbers $\varepsilon_{d,v}(m,N)$ count the (complete) matchings π of the 2*n*-gon such that $\Psi^N(\boldsymbol{\pi}) = \boldsymbol{\pi}, v_m(\boldsymbol{\pi}) = v$, and $d_m(\boldsymbol{\pi}) = d$).

Main Theorem and Example

$$Y(X) = \frac{\sum_{k=0}^{N} A(m, N, k) X^k}{(1 - X)^{N+1}} = \sum_{k=0}^{\infty} (mk + 1)^N X^k,$$

$$\sum_{v \ge 0} \varepsilon_{d,v}(m,N) \cdot \Phi_{m,v}(X) = N - d - 1)!! m^{\frac{N-d}{2}} \cdot \frac{1}{1-X} \left(\frac{1+X}{1-X}\right)^{\frac{N-d}{2} + \mathbf{1}_{m=2}},$$

For example, for m = 2, N = 3 the first column lists 7 matchings $\boldsymbol{\pi}$ that satisfy $\Psi^N(\boldsymbol{\pi}) = \boldsymbol{\pi}$; six with $d_2(\boldsymbol{\pi}) = \boldsymbol{\pi}$ 1 and one with $d_2(\boldsymbol{\pi}) = 3$.

or
$$d = 1$$
, we have $\sum_{v \ge 0} \varepsilon_{1,v}(2,3) \cdot X^v = 3X^2 + 3.$

$$_{,2}(X) = \frac{1+6X+X^2}{(1-X)^3}, \text{ while } \Phi_{2,0}(X) = \frac{1}{1-X}.$$

 $\cdot \Phi_{2,2}(X) + 3 \cdot \Phi_{2,0}(X) = \frac{6}{1-X} \left(\frac{1+X}{1-X}\right)^2.$

Proof Ideas building on Zagier

- character sum in S_{2n} :

$$\sum_{g \ge 0} \varepsilon_g(n) X^{n+1-2g} = \frac{(2n-1)!!}{(2n)!} \cdot \sum_{\chi \in \widehat{S}_{2n}} \chi(\sigma) \chi(c) \cdot \widetilde{\chi} \left(\sum_{w \in S_{2n}} w X^{\operatorname{cyc}(w)} \right).$$

$$\sum_{v \in S_{2n}} v$$

- statistic $v_m(\boldsymbol{\pi})$.

[2] A. R. Miller. On Foulkes characters. Math. Ann. 381.3-4 (2021).

BRANDEIS BRANDEIS UNIVERSITY

• A unicellular map π can be identified with a factorization $\sigma \alpha c = \mathbf{1}$ in S_{2n} , where σ is the fixed point free involution corresponding to the matching, c is the long cycle $(123 \cdots 2n)$ and the number of vertices V equals the number of cycles of α . • The third map in the first column corresponds to

 $(14)(26)(35) \cdot (1245)(36) \cdot (123456) = \mathbf{1}.$

• Zagier's second proof of the Harer-Zagier formula utilizes the Frobenius lemma, which turns our generating function into a

• It can be rewritten via Jucys-Murphy elements, and the sum $wX^{\operatorname{cyc}(w)} = X(X+J_2)(X+J_3)\cdots(X+J_{2n}),$

has normalized character values that are binomials in X. • Such binomials in X are related via a change of basis to the Eulerian polynomials or $\Phi_n(X)$:

$$\sum_{k=1}^{n} \varepsilon_k X^k = \sum_{k=1}^{n} b_k \begin{pmatrix} X+n-k \\ k \end{pmatrix} \text{ iff}$$
$$(1-X)^{n+1} \sum_{k=1}^{n} \varepsilon_k \Phi_k(X) = \sum_{k=1}^{n} b_k X^{k-1}.$$

• Only the hook characters χ_k are non-zero on c and

$$\sum_{\chi \in \widehat{S_{2n}}} \chi(\sigma) \chi(c) X^{\frac{c_{\chi}}{2n}} = \sum_{k=0}^{2n-1} \chi_k(\sigma) (-1)^k X^k,$$

equals the characteristic polynomial of a fixed point free involution σ , namely $(1-X)^{n-1} \cdot (1+X)^n$.

• Symmetric unicellular maps correspond to factorizations $\sigma \alpha c = \mathbf{1}$ fixed under *simulateneous* conjugation by c^N . These become factorizations of a Coxeter element in the group G(m, 1, N) of *m*-colored *N*-permutations.

• All above ideas generalize almost directly in G(m, 1, N).

• Fixed point free involutions break in many conjugacy classes in G(m, 1, N) and must be distinguished by the statistic $d_m(\boldsymbol{\pi})$. • The topological genus g must be replaced by the combinatorial

References

[1] S. K. Lando, A. K. Zvonkin. Graphs on Surfaces and Their Applications. Springer, 2004