The Poincaré-extended ab-index

Galen Dorpalen-Barry*, Joshua Maglione ${ }^{\dagger}$, and Christian Stump ${ }^{\ddagger}$

*University of Oregon, \dagger University of Galway, \ddagger Ruhr-Universität Bochum

Example 1

The extended ab-index of the lattice of flats of the Type A reflection arrangement has nonnegative coefficients. In rank 2, the lattice of flats has extended ab-index

$$
\operatorname{ex} \Psi(\mathcal{L} ; y, \mathbf{a}, \mathbf{b})=\mathbf{a a}+\left(3 y+2 y^{2}\right) \mathbf{b a}+(2+3 y) \mathbf{a b}+y^{2} \mathbf{b} \mathbf{b} .
$$

Our main theorem provides a combiantorial interpretation for the coefficients of the Poincaré-extended ab-index. It states:
Main Theorem (Version 2)
Let P be an R-labeled poset of rank n. Then

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{(\mathcal{M}, E)} y^{\# E} \cdot \operatorname{mon}(\mathcal{M}, E)
$$

where the sum ranges over maximal chains \mathcal{M} subsets $E \subseteq\{1, \ldots, n\}$.

| E | $y^{\# E}$ | $\hat{0} \lessdot \alpha_{1} \lessdot \hat{1}$ | $\hat{0} \lessdot \alpha_{2} \lessdot \hat{1}$ | $\hat{0} \lessdot \alpha_{3} \lessdot \hat{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\}$ | 1 | $\mathbf{a a}$ | $\mathbf{a b}$ | $\mathbf{a b}$ |
| $\{1\}$ | y | $\mathbf{b a}$ | $\mathbf{b a}$ | $\mathbf{b a}$ |
| $\{2\}$ | y | $\mathbf{a b}$ | $\mathbf{a b}$ | $\mathbf{a b}$ |
| $\{1,2\}$ | y^{2} | $\mathbf{b b}$ | $\mathbf{b a}$ | $\mathbf{b a}$ |

Example 2

Here is the Boolean arrangement in three dimensions (left) with its lattice of flats (right). A construction of Björner tells us that every geometric lattice admits an R-labeling, so the coefficients of the Poincaré-extended ab-index are nonnegative.

The extended ab-index of this poset is

$$
\begin{aligned}
& \mathbf{a a a}+(3 y+2) \mathbf{a a b}+\left(3 y^{2}+6 y+2\right) \mathbf{a b a}+\left(3 y^{2}+3 y+1\right) \mathbf{a b b} \\
& \quad+\left(y^{3}+3 y^{2}+3 y\right) \mathbf{b a a}+\left(2 y^{3}+6 y^{2}+3 y\right) \mathbf{b a b}+\left(2 y^{3}+3 y^{2}\right) \mathbf{b b a} \\
& \quad+y^{3} \mathbf{b b b}
\end{aligned}
$$

Connection to the cd-index

Let m be a monomial in \mathbf{a} and \mathbf{b}. Define a transformation ω that first sends $\mathbf{a b}$ to $\mathbf{a b}+y \mathbf{b a}+y \mathbf{a b}+y^{2} \mathbf{b} \mathbf{b}$, then all remaining a's to $\mathbf{a}+y \mathbf{b}$ and all remaining b's to $\mathbf{b}+y \mathbf{a}$.

Theorem (DBSM)

The ω map sends the ab-index of \mathcal{L} to its Poincaré-extended ab-index.

- When P is the lattice of flats of an oriented matroid, setting $y=1$ recovers Billera-Ehrenborg-Readdy's ω map relating the face poset of an oriented matroid to its lattice of flats [1],
- When P is a distributive lattice, setting $y=r+1$ recovers the ω_{r} map of Ehrenborg (related to the " r-Signed Birkoff poset" from Hsiao) [2], and
- When P is the lattice of flats of an oriented interval greedoid, setting $y=1$ recovers the ω map of Saliola-Thomas [5].

Theorem (DBSM)

For an R-labeled poset P, there exists a polynomial $\Phi\left(P ; \mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{d}\right)$ in noncommuting variables $\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{d}$ such that
$\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\Phi\left(P ; \mathbf{a}+y \mathbf{b}, \mathbf{b}+y \mathbf{a}, \mathbf{a b}+y \mathbf{b a}+y \mathbf{a b}+y^{2} \mathbf{b a}\right)$.

Connection to QSym

If S is the set of positions of b's in $m \in \mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$, then send m to F_{S}, Gessel's fundamental quasisymmetric function. Since the ring of symmetric functions sits inside QSym, we there is an natural extension of ω to the ring of symmetric functions.

Together with Darij Grinberg, we conjectured that ω preserves Schur positivity. Last month, Ricky Liu proved and a strengthened version of our conjecture using Kronecker products (denoted by $*$).

Theorem (Liu)
 For any partition $\lambda \vdash n, \omega\left(s_{\lambda}\right)=\sum_{k=0}^{n-1}\left(s_{\lambda} * s_{\left(n-k, 1^{k}\right)}\right) y^{k}$.

Note. This is closely-related to the q-refinement of QSYM studied by GrinbergVassilieva [3].

References
[1] Louis J. Billera, Richard Ehrenborg, and Margaret Readdy. The c-2d-index of oriented matroids. J. Combin. Theory Ser. A. 80(1):79-105, 1997.
[2] Piderd Ehere Thersigned Birkhoff transform. Discrete Math. $344(2)$, 2021.
[3] Darij Grinberg and Ekaterina A. Vassiieva. The algebra of extended peaks. arXiv e-prints, page arXiv:2301.00309, December 2022.
[4] Joshua Magione and Christopher Voll. Flag Hilbert-Poincaré series of hyperplane arrangements and Igusa zeta functions. Israe
[5] Franco Saliola and Hugh Thomas. Oriented interval greedoids. Discrete \& Computational Geometry, 47(1):64-105, 2012.

