Introduction

- A linear (complex) representation of a finite group G is a pair (ρ, V) , where V is a finite dimensional vector space over \mathbb{C} and $\rho : G \to GL(V)$ is a group homomorphism.
- Let Irr(G) denotes the set of irreducible representations of G, upto isomorphism and Conj(G)denotes set of conjugacy classes of G. Fact: $|\operatorname{Conj}(G)| = |\operatorname{Irr}(G)|$.
- Character: $\chi_V : G \to \mathbb{C}$ defined by $g \mapsto trace(\rho(g))$.
- Character table: the matrix whose rows are indexed by Irr(G), columns by Conj(G), and whose (V, C)'th entry is $\chi_V(C)$.
- Character table of the symmetric group S_3 :

	(1)(2)(3)	(1,2)(3)	(1, 2, 3)
$\chi_{(3)}$	1	1	1
$\chi_{(2,1)}$	2	0	-1
$\chi(1,1,1)$	1	-1	1

Some properties of the character table of a finite group:

- Row sums are always nonnegative integers.
- Column sums are always integers and may be negative, e.g., alternating groups.
- The first column sum is at least as large as any other column sum.

How large is the character degree sum $\Gamma_e(G)$ compared to the character table sum s(G) for a finite group G?

Strengthening Field's forgotten conjecture, we have the following:

Conjecture. For all finite groups G, we have $s(G) \ge \Gamma_e(G)$. The equality holds if and only if G is abelian.

- We verified the conjecture for groups of order ≤ 200 using the SmallGroups Library in GAP.
- Valid for abelian groups G: here s(G) = |G|, since all row sums, except the first one, are 0.

• Valid for any finite group of nilpotency class two.

Recall finite irreducible Coxeter groups: consist of four one-parameter families: symmetric groups S_n , hyperoctahedral groups B_n , demihyperoctahedral groups D_n , dihedral groups and a few exceptional groups.

Theorem (Ayyer-Dey-Paul, 2024). *Conjecture is valid for*

• finite Coxeter groups.

• Complex reflection groups G(r, q, n) if $gcd(q, n) \leq 2$.

For many natural families of finite groups, it seems that the first column sum in the character table of *G* dominates the sum of the remaining column sums.

Property S. For a finite group *G*, we have $2\Gamma_e(G) \ge s(G)$.

- Property S holds for Abelian groups.
- Suppose *G* satisfies Property S and *H* is an abelian group. Then $G \times H$ satisfies Property S.
- Let G be a finite group such that all the irreducible characters of G have degrees at most 2. Then *G* satisfies Property S.
- Property S will not generally hold. Counterexamples occur in groups of orders 64, 125, 128, 160, and 192.
- In fact, for an integer m > 1, there exists a group G for which $s(G) > m\Gamma_e(G)$. Our main result is the following:

Theorem (Ayyer–Dey–Paul, 2024). *Property S holds for all finite irreducible Coxeter groups.*

Conjecture. *Property S holds for all alternating groups.*

On the sum of the entries in a character table: Extended abstract

Arvind Ayyer, Hiranya Kishore Dey*, Digjoy Paul arvind@iisc.ac.in, hiranyadey@iisc.ac.in, digjoypaul@iisc.ac.in

Indian Institute of Science, Bangalore, India

Main ingredient: column sums and square roots

Column sums of the character table of finite Coxeter groups are given by the number of square roots of conjugacy class representatives.

Theorem (Frobenius–Schur). *Let* G *be a finite Coxeter group. For each* $g \in G$ *, we have*

 $|\{x \in G \mid x^2 = g\}| = \sum \chi_V(g).$ $V \in \operatorname{Irr}(G)$

Involutions, derangements, and character table sum for symmetric groups

Definition. Let g_n be the sum of the columns indexed by conjugacy classes corresponding to derangements in the character table of S_n .

Proposition (Ayyer–Dey–Paul, 2024). Let s_n be the character table sum and i_n be the number of ions in S_n . For a positive integer n, we have

$$s_n = \sum_{k=0}^n i_k g_{n-k}.$$

Remark. A similar relation holds for B_n .

Remark. The character table sum is asymptotically the same as the number of involutions for S_n, B_n, D_n .

Generating functions

Key observation: An element of S_n with cycle type λ has a square root if only if each even part of λ has even multiplicity.

Proposition (Bessenrodt–Olsson, 2004). *The generating function for the number of columns of* the character table of S_n with nonzero sum is

$$\prod_{i=1}^{\infty} \frac{1}{(1-q^{2i-1})(1-q^4)}$$

We extend the result for generalized symmetric groups. The generalized symmetric group is defined by

$$G(r,1,n) = \mathbb{Z}_r \wr S_n := \{(z_1,\ldots,z_n;\sigma)\}$$

Facts

- $G(1, 1, n) = S_n, G(2, 1, n) = B_n.$
- The conjugacy classes of G(r, 1, n) are indexed by *r*-partite partitions.
- Example: The conjugacy class of $(\overline{2}, \overline{1}, \overline{1}, \overline{1}, \overline{0}, \overline{2}; (123)(45)(6)) \in G(3, 1, 6)$ is indexed by $(\emptyset \mid (3,2) \mid (1)).$

Given $\pi = (z_1, z_2, \dots, z_n; \sigma) \in G(r, 1, n)$, define the bar operation as $\overline{\pi} := (-z_1, \dots, -z_n; \sigma)$.

Theorem (Adin–Postnikov–Roichman, 2010).

 $\chi_V(g) = |\{\pi \in G(r,1,n) \mid \pi\overline{\pi} = g\}| \quad \forall g \in G(r,1,n).$ $V \in \operatorname{Irr}(G(r,1,n))$

Theorem (Ayyer–Dey–Paul, 2024). *The generating function for the number of conjugacy classes* of G(r, 1, n) with nonzero column sum is

$$\prod_{\substack{i=1\\ \infty \\ m \in \mathbb{N}}}^{\infty} \frac{1}{(1-q^{2i-1})(1-q^{4i})(1-q^i)^{(r-1)/2}} \frac{1}{(1-q^{2i-1})(1-q^{4i})(1-q^{2i})(1-q^{2i})} \frac{1}{(1-q^{2i-1})(1-q^{4i})(1-q^{2i})} \frac{1}{(1-q^{2i})(1-q^{2i})(1-q^{2i})} \frac{1}{(1-q^{2i})(1-q^{2i})} \frac{1}{(1-q^{2i})} \frac{1}{(1-q^{2i})(1-q^{2i})} \frac{1}{(1-q^{2i})(1-q^{2i})} \frac{1}{(1-q^{2i})} \frac{1}{(1-q^{2i})} \frac{1}{(1-q^{2i})(1-q^{2i})} \frac{1}{(1-q^{2i})} \frac{1}{$$

 $|z_i \in \mathbb{Z}_r, \sigma \in S_n\}.$

r odd,

 $\overline{q^i)^{(r-2)/2}}$ reven.

Generating function for character table sum

Let

 $o_r(m)$

Theorem (Flajolet 1980, Theorem 2(iib)). *We have*

$$\mathcal{D}(x) = \sum_{n \ge 0} (2n-1)!! x^n = \frac{1}{1 - \frac{x}{1 - \frac{2x}{\cdots}}},$$

$$(x) = \sum_{n \ge 0} o_r(n) x^n = \frac{1}{1 - x - \frac{rx^2}{1 - x - \frac{2rx^2}{\cdots}}}.$$

$$\mathcal{D}(x) = \sum_{n \ge 0} (2n-1)!! x^n = \frac{1}{1 - \frac{x}{1 - \frac{2x}{\cdots}}},$$
$$\mathcal{R}_r(x) = \sum_{n \ge 0} o_r(n) x^n = \frac{1}{1 - x - \frac{rx^2}{1 - x - \frac{2rx^2}{\cdots}}}.$$

Let x, x_1, x_2, \ldots be a family of commuting indeterminates. **Theorem** (Ayyer–Dey–Paul, 2024). *The column sum indexed by* $\lambda = \langle 1^{m_1} 2^{m_2} \cdots \rangle$ *in the charac*ter table of S_n is the coefficient of $x_1^{m_1}x_2^{m_2}\ldots x_n^{m_n}$ in

$$k \ge k$$

Consequently, the generating function of the character table sum is

 $\mathcal{S}(x)$

To extend the above result for G(r, 1, n) we need the following:

Theorem (Euler, 1760).

Theorem (Ayyer–Dey–Paul, 2024). *The generating function (in n) of the character table sum of* G(r, 1, n) is $\int \prod_{k>1} \left(\mathcal{F}(krx^{2k})^{(r-1)/2} \right)$ $\int \prod \left(\mathcal{F}(krx^{2k})^{(r-2)/2} \mathcal{I} \right)$

References

- character table sum for a finite group? arxiv:2406.06036.
- Math. 179 (2010).
- [3] C. Bessenrodt, J. Olsson, On the sequence A085642, 2004.
- 49 (1975).

$$) = \sum_{k=0}^{\lfloor m/2 \rfloor} \binom{m}{2k} (2k-1)!! r^k.$$

$$\begin{bmatrix} \mathcal{D}(2kx_{2k}^2)\mathcal{R}_{2k-1}(x_{2k-1}). \end{bmatrix}$$

$$= \prod_{k\geq 1} \mathcal{D}(2kx^{4k})\mathcal{R}_{2k-1}(x^{2k-1}).$$

$$\mathcal{D}(2krx^{4k}) \mathcal{R}_{(2k-1)/r}(rx^{2k-1}) \Big) \qquad r \text{ odd},$$

 $\mathcal{D}(2krx^{4k}) \mathcal{D}(rkx^{2k}) \mathcal{R}_{(2k-1)/r}(rx^{2k-1}) \Big) \quad r \text{ even}.$

[1] A. Ayyer, H. K. Dey, D. Paul, How large is the character degree sum compared to the

[2] R. M. Adin, A. Postnikov, Y. Roichman, A Gelfand model for wreath products, Israel J.

[4] K.L. Fields, Inequalities concerning the characters of a finite group, Proc. Amer. Math. Soc.

[5] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32.2 (1980).