Arvind Ayyer, Hiranya Kishore Dey*, Digjoy Paul

arvind@iisc.ac.in, hiranyadey@iisc.ac.in, digioypaul@iisc.ac.in

Introduction

- A linear (complex) representation of a finite group G is a pair (ρ, V), where V is a finite dimensional vector space over \mathbb{C} and $\rho: G \rightarrow G L(V)$ is a group homomorphism.
- Let $\operatorname{Irr}(G)$ denotes the set of irreducible representations of G, upto isomorphism and $\operatorname{Conj}(G)$ denotes set of conjugacy classes of G. Fact: $|\operatorname{Conj}(G)|=|\operatorname{Irr}(G)|$.
- Character: $\chi_{V}: G \rightarrow \mathbb{C}$ defined by $g \mapsto \operatorname{trace}(\rho(g))$.
- Character table: the matrix whose rows are indexed by $\operatorname{Irr}(G)$, columns by $\operatorname{Conj}(G)$, and whose (V, C)'th entry is $\chi_{V}(C)$.
- Character table of the symmetric group S_{3} :

Some properties of the character table of a finite group:

- Row sums are always nonnegative integers.
- Column sums are always integers and may be negative, e.g., alternating groups.
- The first column sum is at least as large as any other column sum.

How large is the character degree sum $\Gamma_{e}(G)$ compared to the character table sum $s(G)$ for a finite group G ?
Strengthening Field's forgotten conjecture, we have the following:
Conjecture. For all finite groups G, we have $s(G) \geq \Gamma_{e}(G)$.
The equality holds if and only if G is abelian.

- We verified the conjecture for groups of order ≤ 200 using the SmallGroups Library in GAP.
- Valid for abelian groups G : here $s(G)=|G|$, since all row sums, except the first one, are 0 . - Valid for any finite group of nilpotency class two.

Recall finite irreducible Coxeter groups: consist of four one-parameter families: symmetric groups S_{n}, hyperoctahedral groups B_{n}, demihyperoctahedral groups D_{n}, dihedral groups
and a few exceptional groups.

Theorem (Ayyer-Dey-Paul, 2024). Conjecture is valid for

- finite Coxeter groups.
- Complex reflection groups $G(r, q, n)$ if $\operatorname{gcd}(q, n) \leq 2$.

For many natural families of finite groups, it seems that the fircol able of G dominates the sum of the remaining column sums.

Property S. For a finite group G, we have $2 \Gamma_{e}(G) \geq s(G)$.

- Property S holds for Abelian groups.
- Suppose G satisfies Property S and H is an abelian group. Then $G \times H$ satisfies Property S. - Let G be a finite group such that all the irreducible characters of G have degrees at most 2 . Then G satisfies Property S.
- Property S will not generally hold. Counterexamples occur in groups of orders $64,125,128$ 160, and 192
- In fact, for an integer $m>1$, there exists a group G for which $s(G)>m \Gamma_{e}(G$

Our main result is the following
Theorem (Ayyer-Dey-Paul, 2024). Property S holds for all finite irreducible Coxeter groups.
Conjecture. Property S holds for all alternating groups.

Main ingredient: column sums and square roots

Column sums of the character table of finite Coxeter groups are given by the number of square of conjugacy class representatives.
Theorem (Frobenius-Schur). Let G be a finite Coxeter group. For each $g \in G$, we have

$$
\left|\left\{x \in G \mid x^{2}=g\right\}\right|=\sum_{V \in \operatorname{Irr}(G)} \chi_{V}(g) .
$$

Involutions, derangements, and character table sum for symmetric groups Definition. Let g_{n} be the sum of the columns indexed by conjugacy classes corresponding to derangements in the character table of S_{n}.
Proposition (Ayyer-Dey-Paul, 2024). Let s_{n} be the character table sum and i_{n} be the number of involutions in S_{n}. For a positive integer n, we have

$$
s_{n}=\sum_{k=0}^{n} i_{k} g_{n-k} .
$$

Remark. A similar relation holds for B_{n}
Remark. The character table sum is asymptotically the same as the number of involutions for S_{n}, B_{n}, D_{n}.

Generating functions

Key observation: An element of S_{n} with cycle type λ has a square root if only if each even part of λ has even multiplicity
Proposition (Bessenrodt-Olsson, 2004). The generating function for the number of columns of the character table of S_{n} with nonzero sum is

$$
\prod_{i=1}^{\infty} \frac{1}{\left(1-q^{2 i-1}\right)\left(1-q^{4 i}\right)} .
$$

We extend the result for generalized symmetric groups. The generalized symmetric group is defined by

$$
G(r, 1, n)=\mathbb{Z}_{r} 2 S_{n}:=\left\{\left(z_{1}, \ldots, z_{n} ; \sigma\right) \mid z_{i} \in \mathbb{Z}_{r}, \sigma \in S_{n}\right\} .
$$

Facts
$\bullet-G(1,1, n)=S_{n}, G(2,1, n)=B_{n}$.

- The conjugacy classes of $G(r, 1, n)$ are indexed by r-partite partitions.
- Example: The conjugacy class of $(\overline{2}, \overline{1}, \overline{1}, \overline{1}, \overline{0}, \overline{2} ;(123)(45)(6)) \in G(3,1,6)$ is indexed by ($\emptyset|(3,2)|(1))$.
Given $\pi=\left(z_{1}, z_{2}, \ldots, z_{n} ; \sigma\right) \in G(r, 1, n)$, define the bar operation as $\bar{\pi}:=\left(-z_{1}, \ldots,-z_{n} ; \sigma\right)$.
Theorem (Adin-Postnikov-Roichman, 2010).

$$
\sum_{V \in \operatorname{Irr} G(\underline{r}, 1, n)} \chi_{V}(g)=|\{\pi \in G(r, 1, n) \mid \pi \bar{\pi}=g\}| \quad \forall g \in G(r, 1, n) .
$$

Theorem (Ayyer-Dey-Paul, 2024). The generating function for the number of conjugacy classes of $G(r, 1, n)$ with nonzero column sum is

$$
\begin{cases}\prod_{i=1}^{\infty} \frac{1}{\left(1-q^{2 i-1}\right)\left(1-q^{4 i}\right)\left(1-q^{i}\right)^{(r-1) / 2}} & \text { rodd, } \\ \prod_{1} & \text { reven. }\end{cases}
$$

Generating function for character table sum

Let

$$
o_{r}(m)=\sum_{k=0}^{\lfloor m / 2\rfloor}\binom{m}{2 k}(2 k-1)!!r^{k} .
$$

Theorem (Flajolet 1980, Theorem 2(iib)). We have

$$
\begin{gathered}
\mathcal{D}(x)=\sum_{n \geq 0}(2 n-1)!!x^{n}=\frac{1}{1-\frac{x}{1-\frac{2 x}{\ddots}}}, \\
\mathcal{R}_{r}(x)=\sum_{n \geq 0} o_{r}(n) x^{n}=\frac{1}{1-x-\frac{r x^{2}}{1-x-\frac{2 r x^{2}}{}}} .
\end{gathered}
$$

Let x, x_{1}, x_{2}, \ldots be a family of commuting indeterminates
Theorem (Ayyer-Dey-Paul, 2024). The column sum indexed by $\lambda=\left\langle 1^{m_{1}} 2^{m_{2}} \ldots\right\rangle$ in the character table of S_{n} is the coefficient of $x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{n}^{m_{n}}$ in

$$
\prod_{k>1} \mathcal{D}\left(2 k x_{2 k}^{2}\right) \mathcal{R}_{2 k-1}\left(x_{2 k-1}\right) .
$$

Consequently, the generating function of the character table sum is

$$
\mathcal{S}(x)=\prod_{k \geq 1} \mathcal{D}\left(2 k x^{4 k}\right) \mathcal{R}_{2 k-1}\left(x^{2 k-1}\right) .
$$

To extend the above result for $G(r, 1, n)$ we need the following: Theorem (Euler, 1760).

$$
\mathcal{F}(x)=\sum_{n \geq 0} n!x^{n}=\frac{1}{1-\frac{x}{1-\frac{x}{1-\frac{2 x}{1-2 x}}}} .
$$

Theorem (Ayyer-Dey-Paul, 2024). The generating function (in n) of the character table sum of $G(r, 1, n)$ is

$$
\begin{cases}\prod_{k \geq 1}\left(\mathcal{F}\left(k r x^{2 k}\right)^{(r-1) / 2} \mathcal{D}\left(2 k r x^{4 k}\right) \mathcal{R}_{(2 k-1) / r}\left(r x^{2 k-1}\right)\right) & \text { rodd }, \\ \prod_{k \geq 1}\left(\mathcal{F}\left(k r x^{2 k}\right)^{(r-2) / 2} \mathcal{D}\left(2 k r x^{4 k}\right) \mathcal{D}\left(r k x^{2 k}\right) \mathcal{R}_{(2 k-1) / r}\left(r x^{2 k-1}\right)\right) & \text { reven } .\end{cases}
$$

References

[1] A. Ayyer, H. K. Dey, D. Paul, How large is the character degree sum compared to the character table sum for a finite group? arxiv:2406.06036.
2] R. M. Adin, A. Postnikov, Y. Roichman, A Gelfand model for wreath products, Israel J. Math. 179 (2010).
[3] C. Bessenrodt, J. Olsson, On the sequence A085642, 2004
[4] K.L. Fields, Inequalities concerning the characters of a finite group, Proc. Amer. Math. Soc. 49 (1975).
[5] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32.2 (1980).

