FPS $/$ / C

Classical RSK correspondence

- The classical RSK correspondence, denoted by RSK [Figure 1, (Left)]:
- We introduce RSK as a one-to-one correspondence from nonnegative integer matrices to

Manis

- A realization of RSK via Greene-Kleitman invariants [Figure 1, (Right)]:
- Main ingredients: directed (sub)graph, paths, weights on collections of paths.
- if we begin with a $n \times m$ matrix, we can display the results as a reverse plane partition of $\lambda=m^{n}$ [Figure 2]

$A=\left(\begin{array}{ll} 1 & 03 \\ 0 & 2 \\ 1 & 1 \\ 1 & 0 \end{array}\right)$ Integer matrix		$w_{A}=\binom{1 / 1112233}{133322312}$	
			Bi-word
k	$\left(i_{k}, j_{k}\right)$	$P(k)$	$Q(k)$
1	$(1,1)$	1	1
2	$(1,3)$	13	11
3	$(1,3)$	1733	1111
4	$(1,3)$	[13]3] 3	[11111
5	$(2,2)$	$\begin{array}{\|l\|l\|l\|} \hline \frac{1}{3} \\ \hline \end{array}$	$\frac{1}{\frac{1}{2}}{ }^{1\|1\| 1}$
6	$(2,2)$	$\left.\frac{1}{1} \frac{2}{3} \frac{213}{3}\right]^{2 / 3}$	$\begin{array}{\|l\|l\|} \hline \frac{1}{2} \frac{1}{2}\|1\| 11 \end{array}$
7	$(2,3)$		
8	(3,1)	$$	
9	(3,2)		$\begin{array}{\|l\|l\|l\|l\|} \hline \hline & 1 & 1 & 1 \\ \hline 2 & 2 & 1 & 1 \\ \hline 3 & & \\ \hline \end{array}$

Figure 1. (Left): Illustration of the usual calculations to get $\operatorname{RSK}(A)$. (Right): Use of the Greene-Kleitman
invariants to calculate $\operatorname{RSK}(A)$.

Gansner's generalized RSK

- The Gansner's RSK correspondence, denoted by $\mathcal{R S K}_{\lambda}$ [Figure 3]:
- Fix a nonzero integer partition λ, the map $\boldsymbol{\mathcal { R S K }}$ realizes a one-to-one correspondence from M. λ to reverse plane partitions of shape λ.
invariant, diagonals of λ.
bottom to top, the analoguous map to $\mathcal{R S} \mathcal{K}_{\lambda}$ coincides with the Hillman-Grassl correspondence.

Extended generalization of RSK correspondence

- The extended generalization of $R S K$, denoted by $\mathcal{R S} \mathcal{K}_{\lambda, c}$ [Figure 4]:
- Fix an integer partition λ such that $h_{\lambda}(1,1)=n \geqslant 1$, we define a family of maps $(\mathcal{R} S \mathcal{K}$,) parametrized by Coxeter elements $c \in \mathfrak{S}_{n+1}$, from filling of λ to reverse plane partitions of shape λ.
Main ingredients: filling of λ, Coxeter element $\mathbf{c}(\lambda) \in \mathfrak{S}_{n+1}$ displayed as a labelling of the boxes of λ, Auslander-Reiten quiver of c, Greene-Kleitman invariant, diagonals of λ.
- Based on tools in quiver representation theory

Figure 4. Explicit calculation of $\mathcal{R S K} \mathcal{\lambda}_{\lambda, c}(f)$ for the boxes in the 5 th diagonal from a filling of $\lambda=(5,3,3,2)$, with

Figure 3. Explicit calculations of $\mathcal{R S K}_{\lambda}(f)$ for a given flling f of shape $\lambda=(5,3,3,2)$.

