Markov Chains

Colin Defant, Rupert Li,

Abstract

Rowmotion is a certain well-studied bijective operator on the distributive lattice $J(P)$
order ideals of a finite poset P. We introduce the rowmotion Markov chain $\mathrm{M}_{~}$ (P) by assigni a probability p_{x} to each $x \in P$ and using these probabilities to insert randomness into to original definition of rowmotion. More generally, we introduce a very broad family of toggle Markov chains inspired by Striker's notion of generanized toggling. .We characterize when
toggle Markov chains are irreducible, and we show that each toggle Markov chain has a remarkably simple stationary distribution.
We also provide a second generalization of rowmotion Markov chains to the context of
semidistrim lattices. Given a semidistrim lattice L_{L}, we assign a probability p_{p} to each joinsemidistrim lattices. Given a semidistrim lattice L, we assign a probability p_{j} to each join-
irreducible element j of L and use these probabilities to construct a rowmotion Markov chain M_{L}. Under the assumption that each probability p_{j} is strictly between 0 and 1 , we prove that \mathbf{M}_{L} is irreducible. We also compute the stationary distribution of the rowmotion Markov chain of a lattice obtained by adding a minimum element and a maximum element to a disjoint union
of two chains. of two chains.
We bound the mixing time of M_{L} for an arbitrary semidistrim lattice L. In the special case the mixing time, showing that rowmotion Markov chains of Boolean lattices exhibitit the cutoff phenomenon.

Rowmotion Markov Chains
Let P be a finite poset, and let $J(P)$ be the lattice of order ideals of P. For $S \subseteq P$, let

$$
\nabla(S)=\{x \in P: x \geq s \text { for some } s \in S\}
$$

For each $x \in P$, fix a probability $p_{x} \in[0,1]$. Define the rowmotion Markov chain $\mathbf{M}_{J(P)}$ with state space $J(P)$ as follows. Starting from a state $I \in J(P)$, select a random subset S of $\max (I)$ by adding each element $x \in \max (I)$ into S with probability p_{x}; then transition to the new state $P \backslash \nabla(S)$. If $p_{x}=1$ for all $x \in P$, then $\mathbf{M}_{J(P)}$ is deterministic and agrees with the rowmotio serator

Toggle Markov Chains

Let P be an n-element set, and let $\mathcal{K} \subseteq 2^{P}$. For $x \in P$, define the toggle operator $\tau_{x}: \mathcal{K} \rightarrow \mathcal{K}$ by

$$
\tau_{x}(A)= \begin{cases}A \Delta\{x\} & \text { if } A \Delta\{x\} \in \mathcal{K} \\ A & \text { otherwise },\end{cases}
$$

where \triangle denotes symmetric difference. Fix an ordering $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ of P. Given $Y \subseteq P$ let $\tau_{Y}=\tau_{y^{\prime}} \circ \cdots \circ \tau_{y_{1}}$, where y_{1}, \ldots, y_{r} is the list of elements of Y in the order that they appea within the list x_{1}, \ldots, x_{n}.
For each $x \in P$, fix a probability p_{x}. Define the toggle Markov chain $\mathbf{T}=\mathbf{T}(\mathcal{K}, \mathbf{x})$ as follows. The state space of \mathbf{T} is \mathcal{K}. Suppose the Markov chain is in a state $A \in \mathcal{K}$. Choose a subset $T \subseteq A$ randomly so that each element $x \in A$ is included in T with probability p_{x}, and then transi
from A to the new state $\tau_{T}(A)$.

If P is a finite poset and x is a linear extension of P, then one can show that $\mathbf{T}(J(P), \mathbf{x})$ coincides with the rowmotion Markov chain $\mathrm{M}_{J(P)}$
Theorem ([1]). Suppose $0<p_{x}<1$ for each $x \in P$. Let $\left.\mathcal{H}^{P}\right|_{\mathcal{K}}$ be the graph with vertex set \mathcal{K}, where $A, A^{\prime} \in \mathcal{K}$ are adjacent if and only if $\left|A \triangle A^{\prime}\right|=1$. Then $\mathbf{T}(\mathcal{K}, \mathbf{x})$ is irreducible if and only if the graph $\left.\mathcal{H}^{P}\right|_{\mathcal{K}}$ is connected.
Theorem ([1]). Suppose the toggle Markov chain $\mathbf{T}(\mathcal{K}, \mathbf{x})$ is irreducible and $p_{\mathrm{a}}>$ for every $x \in P$. For $A \in \mathcal{K}$, the probability of the state A in the stationary distribution of $\mathbf{T}(\mathcal{K}, \mathbf{x})$ is

$$
\frac{1}{Z(\mathcal{K})} \prod_{x \in A} p_{x}^{-1}
$$

where $Z(\mathcal{K})=\sum_{A^{\prime} \in \mathcal{K}} \prod_{x^{\prime} \in A^{\prime}} p_{x^{\prime}}^{-1}$

Mixing Times

For $\varepsilon>0$, let $t_{\text {mix }}^{\operatorname{mix}}(\varepsilon)$ denote the mixing time of a Markov chain M. The width of a finite poset P, For $\varepsilon>0$, let $t_{\mathrm{M}}^{\mathrm{m} x}(\varepsilon)$ denote the mixing time of a Markov chai
denoted width (P), is the maximum size of an antichain in P.

Theorem ([1]). Let $\bar{p}=\max _{x \in P} p_{x}$. For each $\varepsilon>0$, we have

$$
t_{\mathbf{M}_{J(P)}}^{\operatorname{mix}}(\varepsilon) \leq \log \varepsilon / \log \left(1-(1-\bar{p})^{\operatorname{width}(P)}\right)
$$

When P is an n-element antichain (so $J(P)$ is a Boolean lattice), we show that $\mathrm{M}_{J(P)}$ exhibits the cutoff phenomenon at time $\frac{1}{2} \log _{1 / p} n$. Roughly speaking, this means that $\mathbf{M}_{J(P)}$ stays relatively unmixed" until around time $\frac{1}{2} \log _{1 / p} n$, when it quickly becomes "well mixed.

References

[1] C. Defant, R. Li, and E. Nestoridi. Rowmotion Markov chains. Adv. Appl. Math., 155 (2024).
[2] C. Defant and N. Williams. Semidistrim lattices. Forum. Math. Sigma, 11 (2023).

SEMIDISTRIM LATTICES

We can extend our definition of rowmotion Markov chains from distributive lattices to semidis trim lattices (see [2]); this provides a generalization that differs from toggle Markov chains.
Let L be a semidistrim lattice, and let \mathcal{J}_{L} and \mathcal{M}_{L} be the set of join-irreducible elements of L and the set of meet-irreducible elements of L, respectively. There is a specific bijection $\kappa_{L}: \mathcal{J}_{L} \rightarrow \mathcal{M}_{L}$ satisyying certain properties. The Galois graph of L is the loopless directed graph G_{L} wi \mathcal{J}_{L} such that for all distinct $j, j^{\prime} \in \mathcal{J}_{L}$, there is an arrow $j \rightarrow j^{\prime}$ if and only if $j \notin \kappa_{L}\left(j^{\prime}\right)$. Let $\operatorname{Ind}\left(G_{L}\right)$ be the set of independent sets of G_{L}. There is a particular way to label the edges of the Hasse diagram of L with elements of \mathcal{J}_{L}; we write $j_{u v}$ for the label of the edge $u \lessdot v$. For lat let $\mathcal{D}_{L}(w)$ be the set of labels of the edges of the form $u<w$, and let $\mathcal{U}_{L}(w)$ be the set Moreover the maps $\mathcal{D}_{L} \mathcal{U}_{1}: L \rightarrow \operatorname{Ind}\left(G_{L}\right)$ are bijections. The rowmotion operator Row: $L \rightarrow L$ is defined by Row $=\mathcal{U}_{L}^{-1} \circ \mathcal{D}_{L}$
The rowmotion Markov chain \mathbf{M}_{L} has state space L. For each $j \in \mathcal{J}_{L}$, fix a probability $p_{j} \in[0,1]$ Starting at a state $u \in L$, we choose a random subset S of $\mathcal{D}_{L}(u)$ by adding each element j $\mathcal{D}_{L}(u)$ into S with probability p_{j} and then transition to the new state $u^{\prime}=\operatorname{Row}(\bigvee S)$.
Theorem ([1]). Let L be a semidistrim lattice, and fix a probability $p_{j} \in(0,1)$ for each join-irreducibe lement $j \in \mathcal{J}_{L}$. The rowmotion Markov chain \mathbf{M}_{L} is irreducible.

When L is obtained by adding a minimum element and a maximum element to a disjoint unio of two chains, we compute the stationary distribution of M_{L} explicitly.

Suggestions for Future Work

It would be interesting to prove that other families of toggle Markov chains exhibit cutoff. Some particularly interesting toggle Markov chains $\mathbf{T}(\mathcal{K}, \mathbf{x})$ are as follows:

- Let P be the set of vertices of a graph G, let \mathcal{K} be the collection of independent sets of G, and let x be some special ordering of P. For example, if G is a cycle graph, then x could be the ordering obtained by reading the vertices of G clockwise.
tet, and let x be an arbitrary ordering of the elements of P. For $0 \leq k \leq n$, let $\mathcal{K}=\{I \subseteq P:|I| \leq k\}$

