EXTENDED SCHUR FUNCTIONS AND BASES RELATED BY INVOLUTIONS Spencer Daugherty · North Carolina State University · sdaughe@ncsu.edu

For a composition α , a **shin-tableau** T is a diagram of shape α filled with positive integers such that each row weakly increases from left to right and each column strictly increases from top to bottom.

The Extended Schur Functions [1]

For a composition α , the **extended Schur function** is defined by

$$\boldsymbol{w}_{lpha}^{*} = \sum_{T} x^{T},$$

where the sum runs over shin-tableaux T of shape α . These functions form a basis of QSym, and $\boldsymbol{w}_{\lambda}^{*}$ is equal to the Schur function s_{λ} when λ is a partition.

$$\boldsymbol{w}_{(2,3)}^{*} = x_{1}^{2}x_{2}^{3} + x_{1}^{2}x_{2}^{2}x_{3} + x_{1}^{2}x_{2}x_{3}^{2} + x_{1}x_{2}x_{3}^{2} + x_{1}x_{2}x_{3}x_{4}^{2} + \cdot \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{$$

A standard shin-tableau U of size n has entries $\{1, 2, \ldots, n\}$ each appearing once. $Des_{\mathfrak{FU}}(U) = \{i : i+1 \text{ is in a strictly lower row than } i\}$ $co_{\mathfrak{FU}}(U) = (i_1, i_2 - i_1, \dots, i_d - i_{d-1}, n - i_d)$ for $Des_{\mathfrak{FU}}(U) = \{i_1, \dots, i_d\}$ For a composition α ,

$$\boldsymbol{\mathbf{v}}_{\alpha}^{*} = \sum_{U} F_{co_{\boldsymbol{\mathbf{v}}}(U)},$$

where the sum runs over standard shin-tableaux U of shape α .

The **complement** of a composition α , denoted α^c , is the composition obtained from the complement of the set associated with α . The **reverse** of $(\alpha_1, \ldots, \alpha_k)$, denoted α^r , is $(\alpha_k, \ldots, \alpha_1)$. The **transpose** of α is defined by $\alpha^t = (\alpha^r)^c = (\alpha^c)^r$.

Involutions on QSym [4]

For a composition α , define the following involutive automorphisms on QSym: $\psi(F_{\alpha}) = F_{\alpha^c} \qquad \rho(F_{\alpha}) = F_{\alpha^r} \qquad \omega(F_{\alpha}) = F_{\alpha^t}$

Row-strict Extended Schur Functions [5]

The **row-strict extended Schur functions** are defined via *row-strict shin-tableaux* which have strictly increasing rows and weakly increasing columns. For a *standard* rowstrict shin-tableau U, a descent $i \in Des_{\mathfrak{Rw}}(U)$ is defined as an entry i such that i+1is in a weakly higher row.

The set of standard row-strict shin-tableaux is the same as the set of standard shintableaux, and for a standard (row-strict) shin-tableau U, we have $co_{\mathbf{w}}(U)^c = co_{\mathcal{R}\mathbf{w}}(U)$.

For a composition α ,

$$\psi(\mathbf{U}^*) = \mathfrak{R}\mathbf{U}^*_{\alpha}$$

[1] S. Assaf and D. Searles. Kohnert polynomials. 2022. [2] J. M. Campbell, K. Feldman, J. Light, P. Shuldiner, and Y. Xu. A Schur-like basis of NSym defined by a Pieri rule. 2014. [3] S. Daugherty. Extended Schur functions and bases related by involutions. Preprint. 2023. [4] K. Luoto, S. Mykytiuk, and S. van Willigenburg. J. Vega, and S. Wang. Row-strict dual immaculate functions and 0-Hecke modules. 2022.

• • • • •

An Involution on the Schur Functions

The classical involution $\omega: Sym \to Sym$ maps the Schur basis to itself by $\omega(s_{\lambda}) = s_{\lambda'}$ where λ' is the conjugate of λ . Collectively, the involutions ψ , ρ , and ω on QSym serve as an analogue to the classical ω . The extended Schur functions are part of what is essentially a system of four bases that is closed under the involutions ψ , ρ , and ω in QSym. We introduce two new Schur-like bases of QSym that, when paired with the extended Schur and row-strict extended Schur functions, complete this picture.

 ψ and ω on QSym restrict to ω on Sym, and ρ restricts to the identity map on Sym.

Flipped Extended Schur Functions

Let α be a composition and β a weak composition. A *flipped shin-tableau* of shape α and type β is a composition diagram α filled with positive integers that weakly decrease along the rows from left to right and strictly increase along the columns from top to bottom, where each positive integer i appears β_i times. A standard flipped tableau S of size n contains the entries $\{1, 2, \ldots, n\}$ each exactly once.

 $Des_{\mathfrak{FU}}(S) = \{i : i+1 \text{ is in a strictly lower row than } i\}$

For a composition α , the **flipped extended Schur function** is defined as $\mathfrak{F}\mathfrak{W}^*_{lpha} = \sum F_{co_{\mathfrak{F}\mathfrak{W}}(S)},$

where the sum runs over standard flipped shin-tableaux S of shape α .

There is a map flip between standard shin-tableaux U and standard flipped shin-tableaux S such that the descent composition of U is the reverse of the descent composition of flip(U) = S. First, flip U horizontally, then replace each entry i with n-i.

(2, 2, 1)

Theorem (D. 2023)

For a composition α ,

 $\rho(\mathbf{U}_{\alpha}^{*}) = \mathfrak{F}\mathbf{U}_{\alpha}^{*} \text{ and } \omega(\mathfrak{R}\mathbf{U}_{\alpha}^{*}) = \mathfrak{F}\mathbf{U}_{\alpha}^{*}.$

Backward Extended Schur Functions

Let α be a composition and β be a weak composition. A backward shin-tableau of shape α and type β is a composition diagram α filled with positive integers that strictly decrease along the rows from left to right and weakly increase along the columns from top to bottom, where each integer i appears β_i times. A standard backward tableau S of size n contains the entries $\{1, 2, \ldots, n\}$ each exactly once.

 $Des_{\mathfrak{B}\mathfrak{W}}(S) = \{i : i+1 \text{ is in a weakly higher row than } i\}$

 $co_{\mathfrak{B}}(S) = (i_1, i_2 - i_1, \dots, i_d - i_{d-1}, n - i_d)$ for $Des_{\mathfrak{B}}(S) = \{i_1, \dots, i_d\}$

For composition α , the **backward extended Schur function** is defined as $\mathfrak{B}\mathfrak{W}_{\alpha}^{*}=\sum_{C}F_{co_{\mathfrak{B}\mathfrak{W}}(S)},$

where the sum runs over standard backward shin-tableaux S of shape α .

 $co_{\mathfrak{FU}}(S) = (i_1, i_2 - i_1, \dots, i_d - i_{d-1}, n - i_d)$ for $Des_{\mathfrak{FU}}(S) = \{i_1, \dots, i_d\}$

Theorem (D. 2023)

For a composition α ,

Backward shin-tableaux are a row-strict version of flipped shintableaux. In fact, the set of standard row-strict tableaux and the set of standard backward tableaux are the same but for a tableaux S, we will have $co_{\mathfrak{F}}(S) = co_{\mathfrak{F}}(S)^c$.

$$\mathbf{v}_{(3,2)}^{*} = F$$

$$\frac{1}{4} \frac{2}{5} \frac{3}{4} \frac{5}{5}$$

$$\Re \mathbf{v}_{(3,2)}^{*} = F_{(1)}$$

$$\frac{1}{2} \frac{3}{4} \frac{5}{5}$$

$$\Re \mathbf{v}_{(2,3)}^{*} = I$$

$$\frac{2}{5} \frac{1}{4} \frac{3}{3}$$

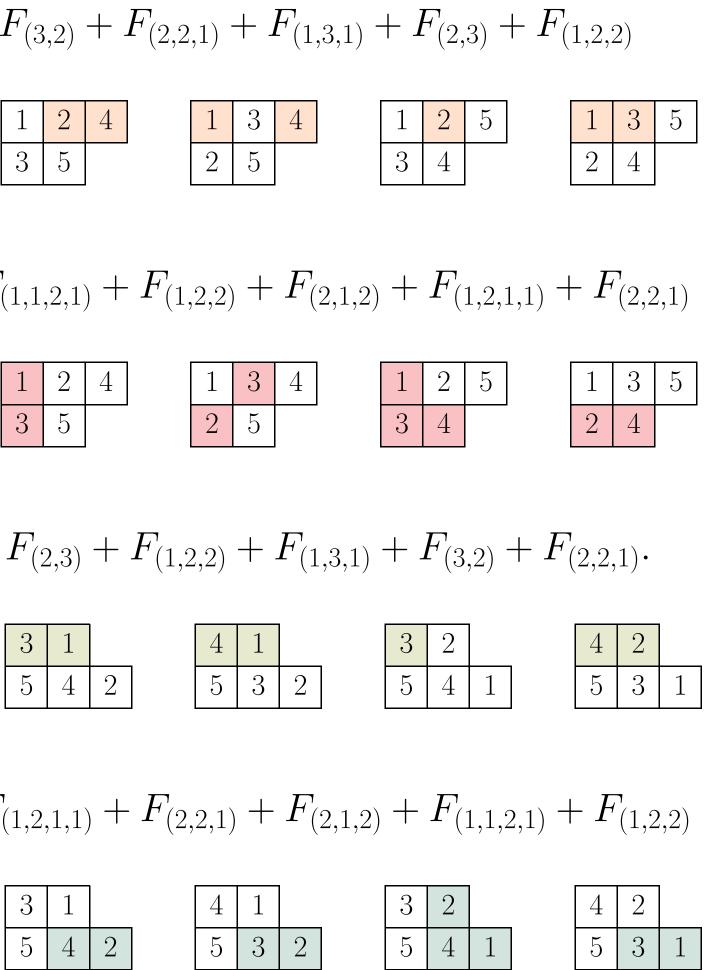
$$\Re \mathbf{v}_{(2,3)}^{*} = F_{(2)}$$

$$\frac{2}{5} \frac{1}{4} \frac{5}{3}$$

Dual Bases in NSym

Each of our bases is dually paired with a variant of the *shin basis* of NSym. We introduce two of these: the **flipped shin functions** and backward shin functions. For each of these bases, we can obtain immediate properties by applying ψ , ρ , or ω to results on the shin functions. We also know the *commutative image* of a flipped or backward shin function. For a partition λ ,

 $\omega(\mathbf{v}_{\alpha}^*) = \mathfrak{B}\mathbf{v}_{\alpha}^* \quad \text{and} \quad \rho(\mathfrak{R}\mathbf{v}_{\alpha}^*) = \mathfrak{B}\mathbf{v}_{\alpha}^* \quad \text{and} \quad \psi(\mathfrak{F}\mathbf{v}_{\alpha}^*) = \mathfrak{B}\mathbf{v}_{\alpha}^*.$



 $\chi(\mathfrak{F}\mathfrak{W}_{\lambda^r}) = s_\lambda \quad \text{and} \quad \chi(\mathfrak{B}\mathfrak{W}_{\lambda^r}) = s_{\lambda'},$ and for a composition α that is not the reverse of a partition, $\chi(\mathfrak{F}\mathfrak{A}_{\alpha}) = \chi(\mathfrak{B}\mathfrak{A}_{\alpha}) = 0.$

