Macdonald characters from a new formula for Macdonald polynomials

Houcine Ben Dali ${ }^{1}$ Michele D'Adderio ${ }^{2}$

${ }^{1}$ Universite de Lorraine $\quad{ }^{2}$ Universita di Pisa

Main results

- We establish a new creation formula for Macdonald polynomials.
- We introduce Macdonald characters and we prove that they can be characterized as shifted symmetric functions satisfying a vanishing condition.
- We conjecture that these characters satisfy some positivity properties.

Macdonald polynomials and Gamma Operator

Let $J_{\lambda}^{(q, t)}$ denote the integral form of Macdonald polynomials (this normalization is directly related to Jack polynomials $J_{\lambda}^{(\alpha)}$)
We consider the integral version of the Nabla and the Delta operators of Bergeron Garsia-Haiman-Tesler:

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot J_{\lambda}^{(q, t)}=(-1)^{|\lambda|}\left(\prod_{\square \in \lambda} q^{a^{\prime}(\square)} t^{-\ell^{\prime}(\square)}\right) J_{\lambda}^{(q, t)}, \\
& \boldsymbol{\Delta}_{v} \cdot J_{\lambda}^{(q, t)}=\prod_{\square \in \lambda}\left(1-v \cdot q^{a^{\prime}(\square)} t^{-\ell^{\prime}(\square)}\right) J_{\lambda}^{(q, t)},
\end{aligned}
$$

where the products run over the cells of the Young diagram of λ, and where a^{\prime} and ℓ^{\prime} are the cell.

We introduce the following operator

$$
\boldsymbol{\Gamma}(u, v):=\boldsymbol{\Delta}_{1 / v} \mathcal{P}_{\frac{u v(1-t)}{}}^{1-q} \boldsymbol{\Delta}_{1 / v}^{-1},
$$

where $\mathcal{P}_{\frac{u v(1-t)}{1-q}}$ denotes the multiplication by the following plethystic exponential

$$
\operatorname{Exp}\left[\frac{u v(1-t)}{1-q}\right]:=\sum_{n \geq 0} h_{n}\left[\frac{u v(1-t)}{1-q} X\right]=\sum_{\mu \text { partition }} \frac{(u v)^{|\mu|}}{z_{\mu}} \prod_{i \in \mu} \frac{1-t^{i}}{1-q^{i}} p_{i}[X]
$$

This operator is a close relative of the Theta operator introduced in [3].

A new creation formula for Macdonald polynomials

$$
\begin{aligned}
& \text { Theorem (B.D-D'Adderio '24+). For any partition } \lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right] \text {, we have } \\
& \qquad \boldsymbol{\Gamma}\left(u, q^{\lambda_{1}}\right) \boldsymbol{\Gamma}\left(t^{-1} u, q^{\lambda_{2}}\right) \cdots \boldsymbol{\Gamma}\left(t^{-(k-1)} u, q^{\lambda_{k}}\right) \cdot 1=t^{-n(\lambda)} \boldsymbol{\nabla} J_{\lambda}^{q, t)}\left[u X+\frac{1}{1-t}\right] \\
& \text { where } n(\lambda)=\sum_{\square \in \lambda} \ell^{\prime}(\square) \text {. Moreover, }
\end{aligned}
$$

$$
\boldsymbol{\Gamma}_{\lambda_{1}}^{(+)} \boldsymbol{\Gamma}_{\lambda_{2}}^{(+)} \cdots \boldsymbol{\Gamma}_{\lambda_{k}}^{(+)} \cdot 1=J_{\lambda}^{(q, t)} \quad \text { where } \quad \boldsymbol{\Gamma}_{m}^{(+)}:=\left[u^{m}\right] \boldsymbol{\nabla}^{-1} \boldsymbol{\Gamma}\left(u, q^{m}\right) \boldsymbol{\nabla}
$$

Proof:

Pe-term relation of Garsia-Mellit,

- Pieri rule.

Macdonald characters

Definition. Fix a partition μ. We define the Macdonald character associated to μ as the function $\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}\left(v_{1}, v_{2}, \ldots\right)$ such that for each $k \geq 1$

$$
\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}\left(v_{1}, v_{2}, \ldots, v_{k}, 1,1, \ldots\right):=\left\langle p_{\mu}, \boldsymbol{\Gamma}\left(1, v_{1}\right) \boldsymbol{\Gamma}\left(t^{-1}, v_{2}\right) \cdots \boldsymbol{\Gamma}\left(t^{-k-1}, v_{k}\right) \cdot 1\right\rangle_{q, t}
$$

Macdonald characters can be thought of as functions on Young diagrams via

$$
\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}(\lambda):=\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}\left(q^{\lambda_{1}}, q^{\lambda_{2}}, \ldots, q^{\lambda_{k}}, 1,1, \ldots\right) .
$$

The evaluation of these characters on partitions λ of size $|\mu|$ is closely related to the power-sum expansion of Macdonald polynomials:

$$
(-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} t^{-2 n(\lambda)} J_{\lambda}^{(q, t)}=\sum_{\mu \upharpoonright|\lambda|} \frac{\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}(\lambda)}{z_{\mu}(q, t)} p_{\mu} .
$$

Macdonald characters are two-parameter deformation of Jack characters $\theta_{\mu}^{(\alpha)}$ introduced by Lassalle, and which have been a useful tool to understand the asymptotic behavior of large Young diagrams under a Jack deformation of the Plancherel measure.

Characterization of $\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}$ as shifted symmetric functions
We say that a function $f\left(v_{1}, v_{2}, v_{3} \ldots\right)$ is shifted symmetric if it is symmetric in the variables $v_{1}, v_{2} t^{-1}, v_{3} t^{-2}$

Theorem (B.D-D'Adderio '24+). Let μ be a partition. The Macdonald character $\widetilde{\boldsymbol{\theta}}^{(q, t)}$ is the unique function which satisfies the following properties:

- $\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}$ is shifted symmetric of degree $\mid \mu$
- $\widetilde{\boldsymbol{\theta}}_{\mu}^{q, t)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$,
- the top homogeneous part of $\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}$ is $p_{\mu}\left(v_{1}, t^{-1} v_{2}, t^{-2} v_{3}, \ldots\right)$.

Jack characters have a similar characterization due to Féray.

Connection to shifted Macdonald polynomials

Theorem (Okounkov '98) Let μ be a partition. There exists a unique function $J_{\mu}^{*}\left(v_{1}, v_{2}, \ldots\right)$ such that

- J_{μ}^{*} is shifted symmetric of degree $|\mu|$.
- (normalization property)

$$
J_{\mu}^{*}(\mu)=(-1)^{|\mu|} q^{n\left(\mu^{\prime}\right)} t^{-2 n(\mu)} j_{\mu}^{(q, t)}
$$

- (vanishing property) for any partition $\mu \not \subset \lambda$
$J_{\mu}^{*}(\lambda)=0$
Moreover, the top homogeneous part of J_{μ}^{*} is $J_{\mu}^{(q, t)}\left(v_{1}, t^{-1} v_{2}, t^{-2} v_{3}, \ldots\right)$. The polynomials J_{μ}^{*} are called shifted Macdonald polynomials
We extend the map $J_{\mu}^{(q, t)} \longmapsto J_{\mu}^{*}$ into an isomorphism φ from the space of symmetric functions
into the space of shifted symmetric functions. We then have into the space of shifted symmetric functions. We then have
$\varphi\left(p_{\mu}\right)=\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}$

We deduce that for any symmetric function f, we have

$$
\varphi(f)\left(v_{1}, \ldots, v_{k}\right)=\left\langle f, \boldsymbol{\Gamma}\left(1, v_{1}\right) \boldsymbol{\Gamma}\left(t^{-1}, v_{2}\right) \cdots \boldsymbol{\Gamma}\left(t^{-(k-1)}, v_{k}\right) \cdot 1\right\rangle_{q, t}
$$

A Macdonald version of Lassalle's conjecture
We introduce the change of variables

$$
\left\{\begin{array} { l }
{ \alpha : = \frac { 1 - q } { 1 - t } } \\
{ \gamma : = t - 1 . }
\end{array} \longleftrightarrow \left\{\begin{array}{l}
q=1+\gamma \alpha \\
t=1+\gamma
\end{array}\right.\right.
$$

Conjectrure. The normalized character

$$
\frac{t^{(k-1)|\mu|}}{\left.(1-t)^{|\mu|} \widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}\left(s_{1}, s_{2}, \ldots, s_{k}\right),{ }^{2}\right)}
$$

is a polynomial in the parameters $\gamma, \alpha-1,\left(1-s_{1}\right) / \gamma,\left(1-s_{2}\right) / \gamma, \ldots,\left(1-s_{k}\right) / \gamma$ with non-negative integer coefficients.
This is a Macdonald version of Lassalle's conjecture on Jack characters, recently proved in [2] using a combinatorial expansion of Jack characters in terms of maps (graphs on surfaces)
Other positivity conjectures
(A Macdonald generalization of Stanley's conjecture on the structure coefficients of Jack polynomials).
Conjectrure For any partitions λ, μ and ν, the quantity

$$
\frac{1}{(1-t))^{\lambda|+|\mu|+| \nu \nu}}\left\langle J_{\lambda}^{(q, t)} J_{\mu}^{(q, t)}, J_{\nu}^{(q, t)}\right\rangle_{q, t}
$$

is a polynomial in γ and α with non-negative integer coefficients.

- (A Macdonald version of Goulden-Jackson b-conjecture). Define, for π, μ, ν of the same size the coefficient $\boldsymbol{h}_{\mu, \nu}^{\pi}$ by the expansion

$$
\begin{aligned}
& \log \left(\sum_{\lambda \text { partition }} u^{|\lambda|} t^{-2 n(\lambda)} q^{n(\lambda)} \frac{J_{\lambda}^{(q, t)}[X] J_{\lambda}^{(q, t)}[Y] J_{\lambda}^{(q, t)}[Z]}{(1-t)|\lambda| j_{\lambda}^{(q, t)}}\right) \\
&=\sum_{m \geq 0} \sum_{\pi, \mu, \nu \vdash m} \frac{u^{m} \boldsymbol{h}_{\mu, \nu}^{\pi}(\alpha, \gamma)}{\alpha[m]_{q}} p_{\pi}[X] p_{\mu}[Y] p_{\nu}[Z] .
\end{aligned}
$$

The coefficients $\boldsymbol{h}_{\mu, \nu}^{\pi}$ are related to the structure coefficients of Macdonald characters $\widetilde{\boldsymbol{\theta}}_{\mu}^{(q, t)}$ Conjectrure. The quantity $t^{|\pi|| | \pi \mid-1)} z_{\pi} z_{\mu} z_{\nu} h_{\mu, \nu}^{\pi}$ is a polynomial in γ and $\alpha-1$ with non-negative integer coefficients.

References

11 H Ben Dali and M D'Adderio Macdonald characters from a new formula for Macdonald polynomials, Preprint arxiv:2404.03904, 2024.
21 H. Ben Dali and M. Dotega Positive formula for Jack polvnomials Jack characters and proof of Lassalle's conjecture, Preprint arXiv:2305.07966, 2023.
3] M. D'Adderio, A. Iraci, and A. Vanden Wyngaerd, Theta eretors, refined delta conjectures, M. D'Adderio, A. Iraci, and A. Vanden Wyngaerd, Theta operators, refined delta con
and coinvariants. Adv. Math. 376 (2021) Paper No. 107447, 59, MR 4178919 4] A. Okounkov, (Shifted) Macdonald polynomials: q-integral representation and combinatorial
formula, Compositio Math. 112 (1998), no. 2, 147-182. MR MR1626029 (99h:05120)

