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• Theorem [C’24]. Let (Pn, Qn) a uniformly random Tamari interval of
size n. Let I ∈ [0, 2n] uniformly random. Then
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Note: Z = (XY )1/4 where X ∼ β(1
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Moreover
Pn(I)

n3/4
−→ Z

3
.

See Wenjie Fang’s simulations for the paths and their ratio (title box, to the left ←).

• Theorem [C’24].
Q̃n(J)− 3P̃n(J)√

n
= Op(1) Therefore

P̃n(J)

Q̃n(J)
→ 1

3
.

New results: Random Tamari intervals Kernel method

K(x)H(x) = F (x)− sxtF (x)H(1)

(x− 1)
Write:

K(x) =

(
−1 + sxt

F (x)

x− 1
+ xt

F (x)− F (1)

x− 1

)
.

Find x = X(t, s) that cancels K(x), substitute and find H(1).

• Theorem [C’24]. The series H(1) ≡ H(1; t, s) is algebraic, with an
explicit rational parametrization,

H(1) =
(1− 2z − Uz2)2(1 + U)

(1− z)6 s =
U(1− z)3

z(1 + U)2(1− Uz2 − 2z)

t = z(1− z)3

−→ This results contains in principe all the distribution of the random
variable Qn(I)... But how to deduce the wanted asymptotics???

H(1) ≡ H(1, t, s) :=
∑

n≥0 t
n
∑

(P,Q)∈In
∑2n

i=0 s
Q(i).

Interval of size n + 1
Interval with a marked

lower zero
Interval

→ to track the lower height, we need to know if the marked
point comes before or after the marked zero...

→ we need two catalytic variables (!!!)

G(x, y) ≡ G(t, x, y, w) :=
∑
n≥0

tn
∑

(P,Q)∈In

2n∑
i=0

wP (i)xcontact<i(P )ycontact≥i(P ).

About the lower path...

•Dyck path: steps ±1, from 0 to 0, stays ≥ 0.

• Tamari cover relation:

4
invert excursion and step

down step

excursion following the down step

•We get the famous Tamari partial order

P

Q

interval [P,Q]

Dyck paths and Tamari lattice Classical count of intervals

F (t;x) = x+ t
∑
i≥1

(
[xi]F (t;x)

)(
x+ x2 + · · ·+ xi

)
F (t, x)

= x+ tx
F (t, x)− F (t, 1)

x− 1
F (t, x)

F (t;x) =:
∑

intervals

tnxzeroes

[Chapoton, Bousquet-

Mélou+Fusy+Préville-Ratelle]

Intervalle of size n+ 1
Interval with a

pointed lower zero
Interval

total size n

• Polynomial equation with one catalytic variable. The theory of
Bousquet-Mélou–Jehanne covers this effectively → Chapoton’s theorem.

Explicitly:

• Transfer Theorem [Flajolet-Odlyzko]. Let f(t) algebraic with unique
dominant singularity at ρ > 0. If f(t) ∼ c(1− t/ρ)α when t→ ρ, then
[tn]f(t) ∼ cΓ(−α)n−α−1ρ−n when n→∞. (α 6∈ N).
• Application to asymptotics of moments (classical)

Let hk =
(
∂
∂s

)k
H(1)

∣∣∣
s=1

, then [tn]hk
[tn]h0

= E[(Qn(I))k]

(m)k := m(m− 1) . . . (m− k + 1)

→ to perform the asymptotics of moments, it is enough to know the
main singularity of hk for each k ≥ 0.
→ Given an algebraic equation for H(1), I can do this (in principle) for
any given k ≥ 0.

• The killing trick – this is great!
Any algebraic function is D-finite (solution of a linear ODE with
polynomial coefficients). Our series in t, s is algebraic, hence it is
algebraic in the variable (s− 1), over Q(t)

Hence it is D-finite: its coefficients, the hk, satisfy a polynomial recursion!

Transfer theorem and D-finiteness... Two catalytic variables (but not really)

→ Contains G(x, y), G(1, y), G(1, 1)... but no G(x, 1).

→ therefore it is, in fact, not hard to solve!
... first solve the catalytic equation in x (with y a parameter)
... then solve the catalytic equation in y

→ To deduce asymptotics, the ”D-finite trick” works again!

(needs computer algebra! order 9 recurrence with polynomial
coefficients)

• [Chapoton 06] The number of pairs [P,Q] with P 4 Q is:

In =
2

n(n+ 1)

(
4n+ 1

n− 1

)
.

• ... nice!. Also the number of plane triangulations with n+ 2
vertices [Tutte 62, Bernardi-Bonichon 09]. The
Bernardi-Bonichon bijection uses Schnyder woods

• Only the beginning of many analogies between Tamari invervals and
planar maps! See e.g. Wenjie Fang’s great works. Or this:

(n+ 1)l−2
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2λi
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?↔ 2(n− 1)`(λ)−2
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(
2λi − 1
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)
bipartite maps of profile λ ` n labelled Tamari intervals of profile λ ` n

Counting intervals
H(x; t, s) gen. fun. of intervals with a marked point on upper path:

t: size

x: nb. of zeroes of P

s: height of point

H(x) ≡ H(t, x, s) :=
∑
n≥0

tn
∑

(P,Q)∈In

xzeroes(P )

2n∑
i=0

sQ(i).

H(x) = F (x) + sxt
H(x)−H(1)

x− 1
F (x) + xt

F (x)− F (1)

x− 1
H(x).

We (trivially) get an equation for H by pointing the previous decomposition

Since we know F (x), this is only a linear equation with one catalytic
variable (x), where s is considered a parameter. This is directly solved
by the kernel method!
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Modest addition: a marked point The D-finite trick

Let hk ≡ hk(t) =
(
∂
∂s

)k
h
∣∣∣
s=1

.

As a series in (s− 1) it is algebraic over Q(t)
so it is D-finite: the hk satisfy a recurrence relation

Let h =≡ h(t, s) an algebraic function.

hk(t) =
L∑
d=1

Ratd(t, k)hk−d(t)

Under reasonable hypotheses one can determine the main singularity of
hk easily by induction on k!!!

Ratd = explicit rational
function of k (algebraic in t)

In our case L = 6 but only two terms contribute to the asymptotics, we
get immediately

hk(t) ∼ ck(1− t/(27/256))1−
3
4
k

where ck =
√
6(3k−4)(3k−8)

96
ck−2. (order two recurrence).

We immediately get the formula for E[Zk].

This trick seems very powerful!

• Bertoin-Curien-Riera (book to come) can do the full scaling limit for the upper path
(but maybe not the explicit limit law)

• This limit law ”should” be universal for nonnegative Bousquet-Mélou–Jehanne
equations, and one should try to prove it.

• The ”asymptotic D-finite trick” is great and I’d like to have other applications of it!
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