On the scaling of random Tamari intervals and Schnyder woods of random triangulations
(with an asymptotic

D-finite trick)

Guillaume Chapuy
CNRS - IRIF - Université Paris Cité)

Dyck paths and Tamari lattice
-Dyck path: steps ± 1, from 0 to 0 , stays ≥ 0.

- Tamari cover relation:

- We get the famous Tamari partial order

Counting intervals

- [Chapoton 06] The number of pairs $[P, Q]$ with $P \preccurlyeq Q$ is:

$$
I_{n}=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}
$$

- ... nice!. Also the number of plane triangulations with $n+2$ vertices [Tutte 62, Bernardi-Bonichon 09]. The

- Only the beginning of many analogies between Tamari invervals and planar maps! See e.g. Wenjie Fang's great works. Or this

$$
(n+1)^{l-2} \prod_{i=1 .}^{\ell(\lambda)}\binom{2 \lambda_{i}}{\lambda_{i}} \stackrel{马}{\leftrightarrow} 2(n-1)_{\ell(\lambda)-2} \prod_{i=1}^{\ell(\lambda)}\binom{2 \lambda_{i}-1}{\lambda_{i}}
$$

New results: Random Tamari intervals - Theorem $\left[C^{\prime} 24\right]$. Let $\left(P_{n}, Q_{n}\right)$ a uniformly
size n. Let $I \in[0,2 n]$ uniformly random. Then
$\frac{Q_{n}(I)}{3 / 4} \longrightarrow Z, \quad \mathbf{E}\left[Z^{k}\right]=\frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{4}} \frac{\Gamma\left(\frac{1}{4} k+\frac{1}{3}\right) \Gamma\left(\frac{1}{4} k+\frac{2}{3}\right)}{\Gamma\left(\frac{1}{4}\right)}$ Note: $Z=(X Y)^{1 / 4}$ where $X \sim \beta\left(\frac{1}{3}, \frac{1}{6}\right)$ and $Y \sim \Gamma\left(\frac{2}{4}, \frac{1}{2}\right)$. Moreover $\frac{P_{n}(I)}{n^{3 / 4}} \longrightarrow \frac{Z}{3}$

$$
\text { - Theorem [C'24]. } \frac{\tilde{Q}_{n}(J)-3 \tilde{P}_{n}(J)}{\sqrt{n}}=O_{p}(1) \text { Therefore } \frac{\hat{P}_{\tilde{P}}(J)}{\hat{Q}_{n}(J)} \rightarrow \frac{1}{3}
$$

See Wenjie Fang's simulations for the paths and their ratio (title box, to the left \leftarrow).

- Polynomial equation with one catalytic variable. The theory of Bousquet-Mélou-Jehanne covers this effectively \rightarrow Chapoton's theorem. Explicitly:
$F(x)=\frac{1+u}{(1+z u)(1-z)^{3}}\left(1-2 z-z^{2} u\right) \quad, \quad F(1)=\frac{1-2 z}{(1-z)^{3}} \quad \begin{gathered}t=z(1-z)^{3}, \\ x=\frac{1+u}{(1+z u)^{2}}\end{gathered}$
Modest addition: a marked point $H(x ; t, s)$ gen. fun. of intervals with a marked point on upper path:
 We (trivially) get an equation for H by pointing the previous decomposition $H(x)=F(x)+s x t \frac{H(x)-H(1)}{x-1} F(x)+x t \frac{F(x)-F(1)}{x-1} H(x)$.

Since we know $F(x)$, this is only a linear equation with one catalytic variable (x), where s is considered a parameter. This is directly solved by the kernel method!

Kernel method

Write: $\quad K(x) H(x)=F(x)-\frac{s x t F(x) H(1)}{(x-1)}$

$$
K(x)=\left(-1+s x t \frac{F(x)}{x-1}+x t \frac{F(x)-F(1)}{x-1}\right)
$$

Find $x=X(t, s)$ that cancels $K(x)$, substitute and find $H(1)$.

- Theorem [C'24]. The series $H(1) \equiv H(1 ; t, s)$ is algebraic, with an explicit rational parametrization,

$$
H(1)=\frac{\left(1-2 z-U z^{2}\right)^{2}(1+U)}{(1-z)^{6}} \quad \begin{array}{ll}
t=z(1-z)^{3} \\
s=\frac{U(1-z)^{3}}{z(1+U)^{2}\left(1-U z^{2}-\right.}
\end{array}
$$

\longrightarrow This results contains in principe all the distribution of the rad
variable $Q_{n}(I) \ldots$ But how to deduce the wanted asymptotics???

$$
H(1) \equiv H(1, t, s):=\sum_{n \geq 0} t^{n} \sum_{(P, Q) \in \mathcal{I}_{n}} \sum_{i=0}^{2 n} s^{Q(i)} .
$$

Transfer theorem and D-finiteness..

- Transfer Theorem [Flajolet-Odlyzko]. Let $f(t)$ algebraic with unique dominant singularity at $\rho>0$. If $f(t) \sim c(1-t / \rho)^{\alpha}$ when $t \rightarrow \rho$, then $\left.t^{n}\right] f(t) \sim c \Gamma(-\alpha) n^{-\alpha-1} \rho^{-n}$ when $n \rightarrow \infty \quad(\alpha \notin \mathbb{N})$,
- Application to asymptotics of moments (classical)
Let $h_{k}=\left.\left(\frac{\partial}{\partial s}\right)^{k} H(1)\right|_{s=1}$, then $\frac{\left[t^{n} \mid h_{k}\right.}{\left[t r h_{0}\right.}=\mathbf{E}\left[\left(Q_{n}(I)\right)_{k}\right]$ $m)_{k}:=m(m-1) \ldots(m-k+1)$
\rightarrow to perform the asymptotics of moments, it is enough to know the \rightarrow main singularity of $h_{\text {f }}$ for each $k \geq 0$.
\rightarrow Given an algebraic equation for $H(1)$ I can do this (in principle) for

- The killing trick - this is great!

Any algebraic function is D -finite (solution of a linear ODE with polynomial coefficients). Our series in t, s is algebraic, hence it is
algebraic in the variable ($s-1$) algebraic in the variable $(s-1)$, over $\mathbb{Q}(t)$
Hence it is D-finite: its coefficients, the h_{k}, satisfy a polynomial recursion
The D-finite trick
Let $h=\equiv h(t, s)$ an algebraic function.
Let $h_{k} \equiv h_{k}(t)=\left.\left(\frac{\partial}{\partial s}\right)^{k} h\right|_{s=1}$
As a series in $(s-1)$ it is algebraic over $\mathbb{Q}(t)$
As a series in $(s-1)$ it is algebraic over $\mathbb{Q}(t)$
so it is D-finite: the h_{k} satisfy a recurrence relation
$\left.h_{k}(t)=\sum^{L} \operatorname{Rat} t_{d}(t, k) h_{k-d}(t) \quad \begin{array}{l}R a t_{d}=\text { explicit rational } \\ \text { function of } k \text { (algebraic in }\end{array}\right)$
Under reasonable hypotheses one can determine the main singularity of
h_{k} easily by induction on $k!!!$
h_{k} easily by induction on $k!!$ w
In our case $L=6$ but only two terms contribute to the asymptotics, we get immediately
$h_{k}(t) \sim c_{k}(1-t /(27 / 256))^{1-\frac{3}{4} k}$
where $c_{k}=\frac{\sqrt{6}(3 k-4)(3 k-8)}{96} c_{k-2}$. (order two recurrence).
We immediately get the formula for $\mathbf{E}\left[Z^{k}\right]$.
This trick seems very powerfu!!

About the lower path..

- \rightarrow to track the lower height, we need to know if the marked point comes before or after the marked zero
\rightarrow we need two catalytic variables (!!!
$G(x, y) \equiv G(t, x, y, w):=\sum_{n \geq 0} t^{n} \sum_{(P, Q) \in \mathcal{I}_{n}} \sum_{i=0}^{2 n} w^{P(i)} x^{\text {contact }_{<i}(P)} y^{\text {contact }_{2}(P)}$.

$\stackrel{\left(P_{2}, Q_{2}\right)}{\substack{Q_{2}}}$
Two catalytic variables (but not really)

$G(x, y)=F(y)+t x w \frac{G(1, y)-G(1,1)}{y-1} F(y)+t x \frac{F(y)-y F(1)}{y-1} F(y)$

$$
+t \frac{x^{2}}{y} \frac{G(x, y)-\frac{y}{x} F(x)-G(1, y)+y F(1)}{x-1} F(y)+t x \frac{F(x)-F(1)}{x-1} G(x, y) .
$$

\rightarrow Contains $G(x, y), G(1, y), G(1,1) \ldots$ but no $G(x, 1)$
\rightarrow therefore it is, in fact, not hard to solve!
first solve the catalytic equation in x (with y a parameter)
\rightarrow To deduce asymptotics, the "D-finite trick" works again! (needs computer algebra! order 9 recurrence with polynomial coefficients)

Conclusion

- Bertoin-Curien-Riera (book to come) can do the full scaling limit for the upper path (but maybe not the explicit limit law)
This limit law "should" be univeral for nonnegative Bousquet-Mélou-Jehanne quations, and one should try to prove it.
The "asymptotic D.finite trick" is great and l'd like to have oter a

References

References

Mireille Bousquet-Melou and Amaund Jehame. Polynomial equations with one catalttic vari

