Eulerian Polynomials for Digraphs

Kyle Celano ${ }^{1}$ Nicholas Sieger ${ }^{2}$ Sam Spiro

${ }^{1}$ Department of Mathematics, Wake Forest University
${ }^{2}$ Department of Mathematics, University of California San Diego
${ }^{3}$ Department of Mathematics, Rutgers University
Overview
We study a generalization of the Eulerian polynomial to
digraphs.

Background

For a permutation $\sigma \in \mathfrak{S}_{n}$, let $\operatorname{des}(\sigma)$ be the number of de scents of σ. The Eulerian polynomial is defined to be

$$
A_{n}(t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{des}(\sigma)} .
$$

This has the well-known property:

$$
A_{n}(-1)= \begin{cases}0 & n \text { even } \\ (-1)^{(n-1) / 2}\left|A l t_{n}\right| & n \text { odd }\end{cases}
$$

where $A l t_{n}$ is the set of alternating permutations $\sigma_{1}>\sigma_{2}<$ $\sigma_{3}>$.

Extending to digraphs
Let D be a digraph on n vertices. For a bijection $\sigma: V \rightarrow[n]$ a descent is an edge $u \rightarrow v$ such that $\sigma(u)>\sigma(v)$. Let $\operatorname{des}_{D}(\sigma)$ be the number of descents of σ

$$
(3 \longrightarrow(3 \longrightarrow(1) \quad \operatorname{des}(\sigma)=4
$$

The Eulerian polynomial of a digraph D is defined as

$$
A_{D}(t)=\sum_{\sigma \in \mathfrak{S}_{D}} t^{\operatorname{des}(\sigma)}
$$

where \mathfrak{S}_{D} is the set of bijections $\sigma: V \rightarrow[n] . A_{D}(t)$ was firs studied by Foata and Zeilberger in 1996.
Example
Let D be $\bigcirc \longrightarrow$ Then label in every way possible

$$
\begin{array}{ll}
1 \longrightarrow(2) \longleftarrow 3 & (2 \longrightarrow 3 \longleftarrow 1) \\
(1 \longrightarrow(3) \longleftarrow 2 & (3 \longrightarrow(1) \longleftarrow 2)
\end{array}
$$

$$
(2 \longrightarrow(1) \longleftarrow 3) \quad 3 \longrightarrow(2) \longleftarrow 1
$$

$$
A_{D}(t)=2+2 t+2 t^{2}
$$

Example (Audience question)
For what digraph(s) D is $A_{D}(t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{inv}(\sigma)}$?

$A_{D}(t)=1+3 t+5 t^{2}+6 t^{3}+5 t^{4}+3 t^{5}+t^{6}$

What is an "alternating permutation" of a directed graph?

If $A_{n}(-1)$ is the number of alternating permutations, what is $A_{D}(-1)$ for a digraph D ?

Lemma (Kalai 2002)

If D, D^{\prime} are two orientations of the same graph G, then $\left|A_{D}(-1)\right|=\left|A_{D^{\prime}}(-1)\right|$

An even sequence of an n-vertex graph G is an ordering $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of the vertex set $V(G)$ such that if each of the subgraphs $G\left[\pi_{1}, \ldots, \pi_{i}\right]$ induced by the first i vertices of π have an even number of edges for all $1 \leq i \leq n$.

Example (Even sequence)

Theorem (Celano-Sieger-Spiro 2023) If D is a digraph which is either bipartite, complete multipartite, or a blowup of a cycle, then $\left|A_{D}(-1)\right|$ is the number of even sequences of its underlying graph.

Example
The even sequences of \longrightarrow are

$$
(1-3-2) \quad(2-3-1
$$

And $\left|A_{D}(-1)\right|=\left|2+2(-1)+2(-2)^{2}\right|=2$
Example
$\pi \in \mathfrak{S}_{n}$ is an alternating permutation if and only if π^{-1} is an even sequence of P_{n}.

$$
\begin{aligned}
& (2) \longrightarrow(3 \longrightarrow \text { (4) } \\
& \text { Alternating permutation } \pi=23154 \\
& \text { (2) } \\
& \text { Even sequence } \pi^{-1}=31254
\end{aligned}
$$

Example
If D directs the edges of G down and to the right, then
$A_{D}(x)=3+28 x+58 x^{2}+28 x^{3}+3 x^{4} \quad\left|A_{D}(-1)\right|=8$ and there are 8 even sequences.

$$
\begin{array}{rrrrrr}
1-3-5 & 1-5-3 & (1-5-2 & 1-4-5 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 4 & 4 & 2 & 4 & 3 \\
1 & 1 & 1 \\
2-3-5 & 2-5-3 & 2-5-1 & 2-4-5 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 4 & 4 & 1 & 4 & 3 \\
1 & 1 & 1 \\
(1) & (3)
\end{array}
$$

Example (Extreme values for trees) For a given directed tree T on $2 n+1$ vertices,

$$
2^{n} n!\leq\left|A_{T}(t)\right| \leq(2 n)!
$$

where lower and upper bounds are achieved only by th hairbrush and star, respectively

$$
-1
$$

The hairbrush (lower bound) The star (upper bound)

$$
\text { Multiplicity of }-1
$$

When $A_{D}(-1)=0$, we know that

$$
A_{D}(t)=(1+t)^{m} B(t)
$$

for some m and some $B(t)$ with $B(-1) \neq 0$. What is m ? What is the largest it can be?
Example
If D is an <Audience Answer>, then

$$
A_{D}(t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{inv}(\sigma)}=[n]!=(1+t)^{\lfloor n / 2\rfloor} B(t)
$$

It turns out that $m=\lfloor n / 2\rfloor$ is the highest you'll ever see. We can study the multiplicity in more detail with the following construction:
Given digraphs D_{1}, D_{2} and a root vertex $v \in D_{2}$, the Given digraphs D_{1}, D_{2} and a root vertex $v \in D_{2}$, the
rooted product digraph, denoted $D_{1} \circ_{v} D_{2}$, is obtained rooted product digraph, denoted $D_{1} \circ_{v} D_{2}$, is obtained
by gluing a copy of D_{2} at v to each vertex of D_{1}.

$\overrightarrow{P_{4}}$
$\overrightarrow{K_{3}}$
$\vec{P}_{4} \circ_{v} \vec{K}_{3}$
Lemma (Celano-Sieger-Spiro 2023)
If D_{1} has d_{1} vertices and D_{2} has d_{2} vertices then

$$
A_{D_{1} \circ_{v} D_{2}}(t)=\frac{1}{d_{2}!}\binom{d_{1} \cdot d_{2}}{d_{1}, \ldots, d_{1}} \cdot A_{D_{1}}(t) A_{D_{2}}(t)^{d_{2}}
$$

Define a family of graphs recursively by

$$
L_{1}=P_{2} \quad \text { and } \quad L_{n+1}=L_{n} \circ P_{2} .
$$

By the formula and induction, we get

$$
A_{L_{n}}(t)=\left(2^{m}\right)!\left(\frac{1+t}{2}\right)^{2^{n}-1}
$$

L_{2}

$L_{3}=L_{2} \circ_{v} P_{2}$

Disjoint products of these graphs bound m.

$$
\begin{aligned}
& \text { Theorem (Celano-Sieger-Spiro 2023) } \\
& \text { Suppose } m \text { is multiplicity of }-1 \text { of } A_{D}(t) \text { for a digraph } D \\
& \text { Then } \\
& \text { (1) } m \leq n-s_{2}(n) \text { where } s_{2}(n) \text { is the number of 1's in } \\
& \text { the binary expansion of } n \text {. } \\
& \text { (If } D \text { is any tournament, then } m=\lfloor n / 2\rfloor
\end{aligned}
$$

Open questions and conjecture

In general, there are more than $\left|A_{D}(-1)\right|$ even sequences Question 1: Can one give a combinatorial interpretation for $\left|A_{D}(-1)\right|$ for arbitrary digraphs D as some special even sequences?

The following is a very natural generalization of our multiplic ity results for tournaments.
Conjecture 2: If D is the orientation of a complete multipartite graph which has r parts of odd size, then $m=\left\lfloor\frac{r}{2}\right\rfloor$.
We know when 0 and -1 are roots of $A_{D}(t)$. We have not found any other integral roots so far
Question 3: Does there exist a digraph D such that $A_{D}(t)$ has an integral root which is not equal to either 0 or -1 ?
Another well-known property of $A_{n}(t)$ is that it is unimodal .e. $a_{0} \leq a_{1} \leq \cdots a_{\lfloor n-1\rfloor / 2} \geq \cdots \geq a_{n-1}$. Due to their connection with Hessenberg varieties, naturally oriented unit interval graphs D have unimodal $A_{D}(t)$.
Question 4: For which digraphs D is $A_{D}(t)$ unimodal?

For Further Information

- K. Celano, N. Sieger, and S. Spiro. Eulerian polynomials for digraphs. 2023. arXiv:2309.07240.
D. Foata and D Zeiberer Graph Computational and Applied Mathenatics 68 (1996), G. Komputional and Applied Mathematics 68 (1996), no. 1, 79-1 paradox and arrow's theorem, Advances in Aplied Mathem 29 (2002), no. 3, 412-426

