Overview

We study a generalization of the Eulerian polynomial to digraphs.

Background

For a permutation $\sigma \in \mathfrak{S}_n$, let $\operatorname{des}(\sigma)$ be the number of descents of σ . The Eulerian polynomial is defined to be

$$A_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{des}(\sigma)}.$$

This has the well-known property:

$$A_n(-1) = \begin{cases} 0 & n \text{ even} \\ (-1)^{(n-1)/2} |Alt_n| & n \text{ odd} \end{cases}$$

where Alt_n is the set of *alternating* permutations $\sigma_1 > \sigma_2 < \sigma_2$ $\sigma_3 > \cdots$

Extending to digraphs

Let D be a digraph on n vertices. For a bijection $\sigma: V \to [n]$, a *descent* is an edge $u \to v$ such that $\sigma(u) > \sigma(v)$. Let $\operatorname{des}_D(\sigma)$ be the number of descents of σ .

 $\operatorname{des}(\sigma) = 4$

The Eulerian polynomial of a digraph D is defined as $A_D(t) = \sum t^{\operatorname{des}_D(\sigma)}$

$$-\sum_{\sigma\in\mathfrak{S}_D} v$$

where \mathfrak{S}_D is the set of bijections $\sigma: V \to [n]$. $A_D(t)$ was first studied by Foata and Zeilberger in 1996.

Example

 $A_D(t) = 1 + 3t + 5t^2 + 6t^3 + 5t^4 + 3t^5 + t^6$

Eulerian Polynomials for Digraphs

Kyle Celano¹ Nicholas Sieger² Sam Spiro³

¹Department of Mathematics, Wake Forest University

²Department of Mathematics, University of California San Diego

³Department of Mathematics, Rutgers University

What is an "alternating permutation" of a directed graph?

If $A_n(-1)$ is the number of *alternating permutations*, what is $A_D(-1)$ for a digraph D?

Lemma (Kalai 2002)

If D, D' are two orientations of the same graph G, then $|A_D(-1)| = |A_{D'}(-1)|$

An even sequence of an n-vertex graph G is an ordering $\pi = (\pi_1, \ldots, \pi_n)$ of the vertex set V(G) such that if each of the subgraphs $G[\pi_1, \ldots, \pi_i]$ induced by the first *i* vertices of π have an *even* number of edges for all $1 \le i \le n$.

Example (Even sequence)

Theorem (Celano–Sieger–Spiro 2023)

If D is a digraph which is either bipartite, complete multipartite, or a blowup of a cycle, then $|A_D(-1)|$ is the number of even sequences of its underlying graph.

Example

The even sequences of
$$2 \rightarrow 4 \rightarrow 3 \rightarrow 3 \rightarrow 1$$
 are $(1 \rightarrow 3 \rightarrow 2) \qquad (2 \rightarrow 3 \rightarrow 1)$

And
$$|A_D(-1)| = |2 + 2(-1) + 2(-2)^2| = 2$$

Example

 $\pi \in \mathfrak{S}_n$ is an alternating permutation if and only if π^{-1} is an even sequence of P_n .

$$2 \longrightarrow 3 \longrightarrow 1 \longrightarrow 5 \longrightarrow 4$$

Alternating permutation
$$\pi = 23154$$

$$----(3)----(1)----(5)----(4)$$

Even sequence $\pi^{-1} = 31254$

where lower and upper bounds are achieved only by the *hairbrush* and *star*, respectively.

Example

If D directs the edges of G down and to the right, then $A_D(x) = 3 + 28x + 58x^2 + 28x^3 + 3x^4 \qquad |A_D(-1)| = 8$ and there are 8 even sequences. (1)-(5)-(3) (1)-(4)-(5)

Example (Extreme values for trees) For a given directed tree T on 2n + 1 vertices,

$$|A^n n! \le |A_T(t)| \le (2n)!$$

The *hairbrush* (lower bound) The *star* (upper bound)

Multiplicity of -1

When $A_D(-1) = 0$, we know that

 $A_D(t) = (1+t)^m B(t)$

for some m and some B(t) with $B(-1) \neq 0$. What is m? What is the largest it can be?

Example

If D is an <Audience Answer>, then

$$A_D(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{inv}(\sigma)} = [n]_t! = (1+t)^{\lfloor n/2 \rfloor} B(t).$$

It turns out that $m = \lfloor n/2 \rfloor$ is the highest you'll ever see. We can study the multiplicity in more detail with the following construction:

Given digraphs D_1, D_2 and a root vertex $v \in D_2$, the rooted product digraph, denoted $D_1 \circ_v D_2$, is obtained by gluing a copy of D_2 at v to each vertex of D_1 .

Lemma (Celano–Sieger–Spiro 2023) If D_1 has d_1 vertices and D_2 has d_2 vertices then

$$A_{D_1 \circ_v D_2}(t) = rac{1}{d_2!} igg(rac{d_1 \cdot d_2}{d_1, \dots, d_1} igg) \cdot A_{D_1}(t) A_{D_2}(t)^{d_2}.$$

Then

In general, there are more than $|A_D(-1)|$ even sequences.

Question 1: Can one give a combinatorial interpretation for $|A_D(-1)|$ for arbitrary digraphs D as some special even sequences?

The following is a very natural generalization of our multiplicity results for tournaments.

Conjecture 2: If *D* is the orientation of a complete multipartite graph which has r parts of odd size, then $m = \lfloor \frac{r}{2} \rfloor$.

We know when 0 and -1 are roots of $A_D(t)$. We have not found any other *integral* roots so far.

Another well-known property of $A_n(t)$ is that it is unimodal i.e. $a_0 \leq a_1 \leq \cdots a_{|n-1|/2} \geq \cdots \geq a_{n-1}$. Due to their connection with Hessenberg varieties, naturally oriented *unit* interval graphs D have unimodal $A_D(t)$.

Define a family of graphs recursively by

 $L_1 = P_2$ and $L_{n+1} = L_n \circ P_2$. By the formula and induction, we get $A_{L_n}(t) = (2^m)! \left(\frac{1+t}{2}\right)^{2^n-1}.$ P_2 \bigcirc

 L_2

 $L_3 = L_2 \circ_v P_2$

Disjoint products of these graphs bound m.

Theorem (Celano–Sieger–Spiro 2023)

Suppose m is multiplicity of -1 of $A_D(t)$ for a digraph D.

1 $m \leq n - s_2(n)$ where $s_2(n)$ is the number of 1's in the binary expansion of n. 2 If D is any tournament, then $m = \lfloor n/2 \rfloor$

Open questions and conjectures

Question 3: Does there exist a digraph D such that $A_D(t)$ has an *integral* root which is not equal to either 0 or -1?

Question 4: For which digraphs D is $A_D(t)$ unimodal?

For Further Information

• K. Celano, N. Sieger, and S. Spiro. *Eulerian polynomials for* digraphs. 2023. arXiv:2309.07240.

• D. Foata and D. Zeilberger, *Graphical major indices*, Journal of Computational and Applied Mathematics **68** (1996), no. 1, 79–101. • G. Kalai, A fourier-theoretic perspective on the condorcet paradox and arrow's theorem, Advances in Applied Mathematics **29** (2002), no. 3, 412–426.