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Overview

We study a generalization of the Eulerian polynomial to
digraphs.

Background

For a permutation σ ∈ Sn, let des(σ) be the number of de-
scents of σ. The Eulerian polynomial is defined to be

An(t) =
∑

σ∈Sn

tdes(σ).

This has the well-known property:

An(−1) =
0 n even

(−1)(n−1)/2|Altn| n odd
where Altn is the set of alternating permutations σ1 > σ2 <
σ3 > · · ·

Extending to digraphs

Let D be a digraph on n vertices. For a bijection σ : V → [n],
a descent is an edge u → v such that σ(u) > σ(v). Let
desD(σ) be the number of descents of σ.

3 3 2 5 1 des(σ) = 4

The Eulerian polynomial of a digraph D is defined as
AD(t) =

∑
σ∈SD

tdesD(σ)

where SD is the set of bijections σ : V → [n]. AD(t) was first
studied by Foata and Zeilberger in 1996.
Example
Let D be Then label in every way possible

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1
AD(t) = 2 + 2t + 2t2

Example (Audience question)
For what digraph(s) D is AD(t) = ∑

σ∈Sn
tinv(σ) ?

AD(t) = 1 + 3t + 5t2 + 6t3 + 5t4 + 3t5 + t6

What is an “alternating permutation" of
a directed graph?

If An(−1) is the number of alternating permutations, what is
AD(−1) for a digraph D?

Lemma (Kalai 2002)

If D, D′ are two orientations of the same graph G, then
|AD(−1)| = |AD′(−1)|

An even sequence of an n-vertex graph G is an ordering
π = (π1, . . . , πn) of the vertex set V (G) such that if each of
the subgraphs G[π1, . . . , πi] induced by the first i vertices of π
have an even number of edges for all 1 ≤ i ≤ n.

Example (Even sequence)
1 3 5

2 4G

1 3 5

2 4

1 3 5

2 4
1 3 5

2 4

1 3 5

2 4

1 3 5

2 4

Theorem (Celano–Sieger–Spiro 2023)

If D is a digraph which is either bipartite, complete multi-
partite, or a blowup of a cycle, then |AD(−1)| is the number
of even sequences of its underlying graph.

Example
The even sequences of are

1 3 2 2 3 1
And |AD(−1)| = |2 + 2(−1) + 2(−2)2| = 2
Example
π ∈ Sn is an alternating permutation if and only if π−1 is an
even sequence of Pn.

2 3 1 5 4

Alternating permutation π = 23154
2 3 1 5 4

Even sequence π−1 = 31254

Example
If D directs the edges of G down and to the right, then

AD(x) = 3 + 28x + 58x2 + 28x3 + 3x4 |AD(−1)| = 8
and there are 8 even sequences.

1 3 5
2 4

1 5 3
4 2

1 5 2
4 3

1 4 5
2 3

2 3 5
1 4

2 5 3
4 1

2 5 1
4 3

2 4 5
1 3

Example (Extreme values for trees)
For a given directed tree T on 2n + 1 vertices,

2nn! ≤ |AT (t)| ≤ (2n)!
where lower and upper bounds are achieved only by the
hairbrush and star, respectively.

The hairbrush (lower bound) The star (upper bound)

Multiplicity of −1

When AD(−1) = 0, we know that
AD(t) = (1 + t)mB(t)

for some m and some B(t) with B(−1) ̸= 0. What is m?
What is the largest it can be?
Example
If D is an <Audience Answer>, then

AD(t) =
∑

σ∈Sn

tinv(σ) = [n]t! = (1 + t)⌊n/2⌋B(t).

It turns out that m = ⌊n/2⌋ is the highest you’ll ever see.
We can study the multiplicity in more detail with the following
construction:
Given digraphs D1, D2 and a root vertex v ∈ D2, the
rooted product digraph, denoted D1 ◦v D2, is obtained
by gluing a copy of D2 at v to each vertex of D1.

−→
P4

−→
K3

−→
P4 ◦v

−→
K3

v

Lemma (Celano–Sieger–Spiro 2023)

If D1 has d1 vertices and D2 has d2 vertices then

AD1◦vD2(t) = 1
d2!

(
d1 · d2

d1, . . . , d1

)
· AD1(t)AD2(t)d2.

Define a family of graphs recursively by
L1 = P2 and Ln+1 = Ln ◦ P2.

By the formula and induction, we get

ALn
(t) = (2m)!

(
1 + t

2

)2n−1
.

L2

v

L3 = L2 ◦v P2

P2

Disjoint products of these graphs bound m.

Theorem (Celano–Sieger–Spiro 2023)

Suppose m is multiplicity of −1 of AD(t) for a digraph D.
Then

1 m ≤ n − s2(n) where s2(n) is the number of 1’s in
the binary expansion of n.

2 If D is any tournament, then m = ⌊n/2⌋

Open questions and conjectures

In general, there are more than |AD(−1)| even sequences.
Question 1: Can one give a combinatorial interpretation
for |AD(−1)| for arbitrary digraphs D as some special even
sequences?
The following is a very natural generalization of our multiplic-
ity results for tournaments.
Conjecture 2: If D is the orientation of a complete multi-
partite graph which has r parts of odd size, then m = ⌊r

2⌋.
We know when 0 and −1 are roots of AD(t). We have not
found any other integral roots so far.
Question 3: Does there exist a digraph D such that AD(t)
has an integral root which is not equal to either 0 or −1?
Another well-known property of An(t) is that it is unimodal
i.e. a0 ≤ a1 ≤ · · · a⌊n−1⌋/2 ≥ · · · ≥ an−1. Due to their
connection with Hessenberg varieties, naturally oriented unit
interval graphs D have unimodal AD(t).
Question 4: For which digraphs D is AD(t) unimodal?
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