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Introduction

This categorification was first studied in the full Grass-
mannian [Sco06, JKS16, BKM16] and then generalized to
all positroid varieties [Pre22,GL23]. It has proven use-
ful, for example, in proving that two cluster structures
on positroid varieties quasi-coincide [Pre23].

The construction of the boundary algebra of a connected
positroid in the literature has a number of involved
steps. We give a direct combinatorial description of the
boundary algebra and its generating relations. We will
view this as a cryptomorphism for connected positroids.

Positroids
Positroids are realizable matroids reflecting the combina-
torial structure of the totally nonnegative Grassmannian.

A (reduced) plabic graph (planar bi-colored) is a planar
graph embedded in a disc. Interior vertices are assigned
empty ( ) or filled ( ). Boundary vertices must be inci-
dent to exactly one edge.
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Positroids are indexed by decorated permutations. Ob-
tain these from plabic graphs using the "rules of the road"
from each vertex: Turn right at filled vertices and left
at empty vertices. This yields the trip permutation.
One must decorate, i.e. distinguish, different types of
fixed points, but we only consider connected positroids,
whose permutations have no fixed points.

For any bipartite plabic graph G, the quiver Q(G) is the
dual to G with the exterior vertex removed and with
edges oriented so that is on the left. This is illustrated
in the next column. Q(G) defines a cluster algebra which
depends only on the trip permutation and is isomorphic
to a cluster structure on a subset Π◦

π of the Grassmannian
called an open positroid variety [KLS13].

Boundary Algebras
Boundary algebras are an important tool in the categori-
fication of the cluster structure on positroid varieties.
Let G be a plabic graph with trip permutation π.

• Path algebra CQ(G): Algebra spanned by finite paths
in quiver Q(G), with operation of concatenation.

• Dimer algebra AQ(G): For each internal edge, identify
two paths in CQ(G) as illustrated by the dashed and
dotted edges in the left subfigure below.

• Boundary algebra Bπ: In AQ(G), let ei be the empty
path at boundary vertex i, and e =

∑
i ei. Then

Bπ := eAQ(G)e consists of paths in the dimer algebra
starting and ending at the boundary.
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Paths between nonadjacent boundary vertices in Q(G)
which do not factor as products of other paths be-
tween boundary vertices are called nonadjacent arrows
(like 1→ 3 above). Let Q◦

π be the quiver with vertices
1, 2, . . . , n, arrows between adjacent vertices, and non-
adjacent arrows.

Theorem [BS24]: The boundary algebra is a quotient
of CQ◦

π(G) which can be computed using only the data
of the nonadjacent arrows of Q◦

π along with the num-
ber Xp of permutation strands which are to the left of
and antiparallel each nonadjacent arrow p.

One of the most difficult steps of the construction in-
volves taking the cancellative closure of an ideal Iπ. The
cancellative closure, denoted C(Iπ), is the smallest ideal
containing Iπ such that for any arrow p of Q◦

π and ele-
ment q of CQ◦

π, we have pq ∈ C(Iπ) ⇐⇒ q ∈ C(Iπ). Our
work allows us to give explicit generators for C(Iπ).

We will now describe how to recover the permutation
of a connected positroid from its boundary algebra and
develop a combinatorial structure describing these al-
gebras. We thus offer a new combinatorial object in bi-
jection with connected positroids, that is, a cryptomor-
phism of connected positroids.

Boundary Charts
Goals: Characterize the quivers Q◦

π and determine π
from its boundary algebra.

A boundary chart encapsulates the important data from
the quiver Q◦

π. It has n vertices, nonadjacent arrows
between them, and for each arrow p a pair of integers
(Xp : Yp) satisfying Yp−Xp+ reachp = k for some fixed k.

The boundary algebra of a connected positroid gives
rise to a boundary chart. We call such a boundary chart
realizable. For example, for π = 4 5 2 1 3:
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To recover the permutation π (and the corresponding
positroid) from a realizable boundary chart: Inducting
on the arrows, from right to left, let Y ′

p be the difference
between Yp, and the number of permutation strands an-
tiparallel and to the right of p. We connect the ith closest
permutation-vertex from the head of p to the (Y ′

p+1−i)th

closest permutation-vertex from the tail of p, skipping
over vertices j which already have strands starting or
ending there (See figure below, top row). This totals Yp

strands antiparallel and right of p. Similarly draw Xp

antiparallel strands to the left of p (bottom left). Connect
all other permutation-vertices i to i− k (bottom right).
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Boundary Charts (cont.)
Not all boundary charts are realizable. The following
would render a boundary chart unrealizable:
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There is no space for
three permutation
strands to the left of the
arrow 1 → 4.

The two strands left
and antiparallel to 1 →
4 will overwhelm the
arrow 8 → 5.
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The crossing arrows
create two different
strands originating at 1.

The digon with Xp and
Yp values summing to
n = 6 causes a discon-
nected permutation.

Theorem: These are the only obstacles to realizability.

Applications of Boundary Charts
1. Boundary charts allow us to compute explicit genera-

tors for C(Iπ). To do so, we need to make use of in-
formation that is readily available from the boundary
chart of π, but not from π, as well as information read-
ily available from π but not from its boundary chart.
Thus, a permutation and its boundary chart offer dif-
ferent insight into Π◦

π.
2. Realizable boundary charts are a new cryptomorphic

description of connected positroids.

References
[BKM16] K. Baur, A. D. King, and B. R. Marsh. “Dimer models and cluster categories of Grassman- nians", 2016

[BS24] J. Berggren and K. Serhiyenko. "Boundary Algebras of Positroids"
[GL23] P. Galashin and T. Lam. “Positroid varieties and cluster algebras”, 2023
[JKS16] B. T. Jensen, A. D. King, and X. Su. “A categorification of Grassmannian cluster algebras", 2016

[KLS13] A. Knutson, T. Lam, and D. E. Speyer. “Positroid varieties: juggling and geometry”, 2013
[Pre22] M. Pressland. “Calabi–Yau properties of Postnikov diagrams”, 2022
[Pre23] M. Pressland. “Quasi-coincidence of cluster structures on positroid varieties”, 2023
[Sco06] J. S. Scott. “Grassmannians and cluster algebras”, 2006


