

Introduction

The ring of symmetric functions Λ over the two-parameter field $\mathbb{Q}(q,t)$ is a fundamental object in modern combinatorics relating to representation theory and geometry. There are many special operators which act on Λ occurring in modern algebraic combinatorics including the Macdonald operator Δ which acts diagonally on the symmetric Macdonald functions $P_{\lambda}[X;q,t]$. One may understand the operator Δ using the **Cherednik op**erators and the double affine Hecke algebras of Cherednik which act on finite variable non-symmetric polynomials $\mathbb{Q}(q,t)[x_1,\ldots,x_n]$. In order to relate these two notions one must perform a symmetrization and stable-limit process which the authors Schiffmann-Vasserot show gives more than just an understanding of Δ . They show that the **elliptic Hall algebra** \mathcal{E}^+ of Burban-Schiffmann acts on Λ and this action contains many of the important operators in Macdonald theory including Δ . We will take this approach to construct a family of representations for \mathcal{E}^+ generalizing Λ .

Background

Elliptic Hall Algebra

The (positive) elliptic Hall algebra \mathcal{E}^+ of Burban-Schiffmann is the stable-limit of the (positive) spherical double affine Hecke algebras in type GL_n . The algebra \mathcal{E}^+ is generated by the special elements $P_{0,\ell}, P_{r,0}$ for $\ell \in \mathbb{Z} \setminus \{0\}$ and r > 0 which are limits of the special elements of the spherical double affine Hecke algebras

- $P_{0,\ell} := \lim_{n \to \infty} P_{0,\ell}^{(n)} = \lim_{n \to \infty} \epsilon^{(n)} \left(\sum_{i=1}^{n} \theta_i^{\ell} \right) \epsilon^{(n)}$
- $P_{r,0} := \lim_{n \to \infty} P_{r,0}^{(n)} = \lim_{n \to \infty} q^r \epsilon^{(n)} \left(\sum_{i=1}^n X_i^r \right) \epsilon^{(n)}$.

Here $\epsilon^{(n)}$ is the **trivial Hecke idempotent** and θ_i are the **Cherednik elements**.

Vector-Valued Polynomials

For a partition λ with size $|\lambda| = n$, Dunkl-Luque define the space of **vector-valued** (vv.) polynomials V_{λ} as

$$V_{\lambda} := \mathbb{Q}(q,t)[x_1,\ldots,x_n] \otimes S_{\lambda}$$

where S_{λ} is the Specht-module corresponding to λ for the finite Hecke algebra with quadratic relation $(T_i - 1)(T_i + t) = 0$. The space S_{λ} has a distinguished basis $\{e_{\tau} | \tau \in I_{\lambda}\}$ $SYT(\lambda)$ of weight vectors for the Jucys-Murphy elements. We define the operators

$$T_i(x^{\alpha} \otimes v) := x^{s_i(\alpha)} \otimes T_i(v) + (1-t)\frac{x^{\alpha} - x^{s_i(\alpha)}}{x_i - x_{i+1}} \otimes v$$

and

$$\pi_n(x^{\alpha} \otimes v) := (qx_1)^{\alpha_n} x_2^{\alpha_1} \cdots x_n^{\alpha_{n-1}} \otimes t^{n-1} T_1^{-1} \cdots T_{n-1}^{-1}(v)$$

We also define X_i as the obvious multiplication operator and using θ_i := $t^{-(n-i)}T_{i-1}^{-1}\cdots T_1^{-1}\pi_n T_{n-1}\cdots T_i$, we define the action of θ_i . These operators generate a representation of the (positive) double affine Hecke algebra of type GL_n . This representation admits a basis of θ -weight vectors $\{F_{\tau} | \tau \in PSYT_{>0}(\lambda)\}$ called the **non-symmetric** vv. Macdonald polynomials indexed by certain labelled diagrams $\tau \in PSYT_{>0}(\lambda)$ called (non-negative) periodic standard Young tableaux. By Hecke-symmetrizing using $\epsilon^{(n)}$ one obtains the symmetric vv. Macdonald polynomials P_T indexed by (non-negative) reverse semi-standard Young tableaux of shape λ . These are a basis for $W_{\lambda} := \epsilon^{(n)} V_{\lambda}$. We give a non-symmetric example here for the diagram $\frac{1q}{2} \in PSYT_{\geq 0}(2,1)$:

$$F_{\frac{1q}{3}} = t^{-2}X_{1}X_{2} \otimes e_{\frac{1}{3}} + t^{-2}\left(\frac{1-t}{1-qt^{2}}\right)X_{2}X_{3} \otimes e_{\frac{1}{3}}$$
$$+ \frac{t^{-2}}{1+t}\left(\frac{1-t}{1-qt^{2}}\right)X_{2}X_{3} \otimes e_{\frac{1}{3}} - t^{-3}\left(\frac{1-t}{1-qt^{2}}\right)X_{1}X_{3}$$
$$+ \frac{t^{-1}}{1+t}\left(\frac{1-t}{1-qt^{2}}\right)X_{1}X_{3} \otimes e_{\frac{1}{3}}$$

Murnaghan-Type Representations for the Elliptic Hall Algebra

Milo Bechtloff Weising, arXiv: 2405.00756

University of California, Davis

Murnaghan-Type Representations

In the following result we see that there exist representations of \mathcal{E}^+ which may be built from the spaces V_{λ} along certain sequences of partitions λ directly generalizing the way one may obtain Λ from the polynomial spaces $\mathbb{Q}(q,t)[x_1,\ldots,x_n]$. The proof of the following theorem involves carefully defining quotient maps $V_{\lambda} \to V_{\lambda'}$ with exceptional stability properties.

For a partition λ and $n \ge n_{\lambda} := |\lambda| + \lambda_1$ set $\lambda^{(n)} := (n - |\lambda|, \lambda)$. Define $\Omega(\lambda)$ to be the set of (non-negative) reverse semi-standard fillings of the infinite diagram $\lambda^{(\infty)}$ which are 0 almost everywhere.

Theorem 1 [BW 24]

For any partition λ there exists a stable-limit construction for the family of spherical double affine Hecke algebra modules $(W_{\lambda^{(n)}})_{n>n_{\lambda}}$ generating a module W_{λ} for the positive elliptic Hall algebra \mathcal{E}^+ . This space has a distinguished basis of weight vectors \mathfrak{P}_T for the action of $P_{0,1}$ called the **generalized Macdonald functions** indexed by $T \in \Omega(\lambda).$

Examples

For $\lambda = (3, 2, 1)$ we have the diagram

	5	3	3	2	1	0	0	0	•••
n	3	2	0						
	1	1							
	0								

The corresponding generalized Macdonald function \mathfrak{P}_T has X-degree 5+3+3+2+31+3+2+1+1=21 and is an eigenvector for the action of $P_{0,1}$ with eigenvalue $(q^{5}-1) + (q^{3}-1)(t^{-1}+t^{1}+t^{2}) + (q^{2}-1)(t^{0}+t^{3}) + (q-1)(t^{-2}+t^{-1}+t^{4}).$

Here $c(\Box)$ is the **content** of the box \Box .

Main Properties

- For $\lambda = \emptyset$, $W_{\emptyset} = \Lambda$ and $\Omega(\emptyset)$ is naturally in bijection with the set of partitions. Further, in this case $\mathfrak{P}_T = P_T[X; q, t]$ up to a scalar.
- For distinct partitions $\lambda \neq \mu$, $W_{\lambda} \ncong W_{\mu}$ as \mathcal{E}^+ modules.
- Each \mathfrak{P}_T is the limit of the symmetric vv. Macdonald polynomials $P_{T|_{\mathcal{Y}(n)}}$.
- \mathfrak{P}_T is X-homogeneous of degree $\sum_{\Box \in \lambda^{(\infty)}} T(\Box)$
- The spectrum of $P_{0,1}$ on W_{λ} is simple and given by

$$\{\sum_{\square \in \lambda^{(\infty)}} (q^{T(\square)} - 1)t^{c(\square)} \mid T \in$$

- Each of the representations W_{λ} has a unique 1-dimensional subspace of minimal X-degree spanned by $\mathfrak{P}_{T_{\lambda}^{\min}}$ where T_{λ}^{\min} is the unique element of $\Omega(\lambda)$ with minimal sum of entries given by $T_{\lambda}^{\min}(\Box) := \#\{\Box' \in \lambda^{(\infty)} | \Box' \text{ strictly below } \Box\}$.
- Each W_{λ} is a cyclic \mathcal{E}^+ module generated by $\mathfrak{P}_{T_{\lambda}^{\min}}$.
- The element $P_{r,0}$ acts on \widetilde{W}_{λ} by multiplication by $q^r p_r[X]$.
- For all $\ell \in \mathbb{Z} \setminus \{0\}$

 $P_{0,\ell}(\mathfrak{P}_T$

$$(T_T) = \left(\sum_{\Box \in \lambda^{(\infty)}} (q^{\ell T(\Box)} - 1)\right)$$

FPSAC 2024

 $\in \Omega(3,2,1).$

 $\in \Omega(\lambda)\}.$

We find the following Pieri rule for the multiplication by e_r^{\bullet} map on W_{λ} generalizing the ordinary Pieri rule for the symmetric Macdonald functions $P_{\lambda}[X;q,t]$. We achieve this formula by studying the combinatorics of the expansion of the P_T into the F_{τ} basis coming from inversion sets and using a few techniques coming from double affine Hecke algebras. We give here only the finite rank Pieri rule for the P_T from which the full Pieri rule for the \mathfrak{P}_T may be directly inferred.

Theorem 2 [BW 24]

For $T \in \text{RSSYT}_{>0}(\lambda)$ and $1 \le r \le n$ we have the expansion

where $d_{S,T}^{(r)}$ is the product of

$$t^{\binom{r}{2}} e_r \left[\frac{1 - t^n}{1 - t} \right] \frac{[\mu(S)]_t!}{[n]_t!} \Big|_{(\Box_1, \Box_1)} = \frac{1 - t^n}{[\Box_1]_t!} \Big|_{(\Box_1, \Box_1)} = \frac{1 - t^n}{[\Box_1$$

and the sum

 $\Psi^r(\tau) \in \operatorname{PSYT}_{\geq 0}(\lambda;S)$

be obtained from T by adding the value of 1 to a single box of T.

q, t Product-Series Identities

By understanding the expansions of the P_T into the F_{τ} and applying some elementary non-archimedean analysis techniques we find an interesting and nontrivial family of product-series identities in $\mathbb{Q}(q)((t))$. Here APSYT_{>0}(λ) is the set of **asymptotic periodic** standard Young tableaux with basement shape λ which are certain labellings of $\lambda^{(\infty)}$.

Theorem 3 [BW 24]

For
$$T \in \Omega(\lambda)$$
 we have the following

$$\frac{\prod_{\Box \in \lambda^{(\mathrm{rk}(T))}} \left(1 - q^{-T(\Box)} t^{\mathrm{rk}(T) - |\lambda| - c(\Box)} \right)}{(1 - t)^{\mathrm{rk}(T)} [\mu(T|_{\lambda^{(\mathrm{rk}(T))}})]_t!}$$

$$= \sum_{\tau \in \mathrm{APSYT}_{\ge 0}(\lambda;T)} t^{\mathrm{inv}(\tau)} \prod_{(\Box_1, \Box_2) \in \mathrm{Inv}(\tau)} t^{\mathrm{inv}(\tau)}$$

In particular, the above **infinite** series is actually **rational** i.e. in $\mathbb{Q}(q,t)$.

- MR2971011
- **162** (2013), no. 2, 279–366. MR3018956

Pieri Rule

and S ranges over all $S \in \text{RSSYT}_{>0}(\lambda)$ one can obtain from T by adding r to the boxes of T with at most one 1 being added to each box. Further, $d_{ST}^{(1)} \neq 0$ whenever S may

References

[1] Milo Bechtloff Weising, Murnaghan-type representations of the positive elliptic Hall algebra, arXiv.2405.00756 (2023). [2] C. F. Dunkl and J.-G. Luque, Vector valued Macdonald polynomials, Sém. Lothar. Combin. 66 (2011/12), Art. B66b, 68

[3] Olivier Schiffmann and Eric Vasserot, The elliptic Hall algebra and the K-theory of the Hilbert scheme of \mathbb{A}^2 , Duke Math. J