Murnaghan-Type Representations for the Elliptic Hall Algebra

Milo Bechtloff Weising, arXiv: 2405.00756
University of California, Davis

Introduction

The ring of symmetric functions Λ over the two-parameter field $\mathbb{Q}(q, t)$ is a fundamental object in modern combinatorics relating to representation theory and geometry. There object in modern combinatorics relating to representation theory and geometry. There
are many special operators which act on Λ occurring in modern algebraic combinatorics are many special operators which act on Λ occurring in modern algebraic combinatorics
including the Macdonald operator Δ which acts diagonally on the symmetric Macdonald functions $P_{\lambda}[X ; q, t]$. One may understand the operator Δ using the Cherednik operators and the double affine Hecke algebras of Cherednik which act on finite variable non-symmetric polynomials $\mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]$. In order to relate these two notions one must perform a symmetrization and stable-limit process which the authors SchiffmannVasserot show gives more than just an understanding of Δ. They show that the elliptic Hall algebra \mathcal{E}^{+}of Burban-Schiffmann acts on Λ and this action contains many of the important operators in Macdonald theory including Δ. We will take this approach to construct a family of representations for \mathcal{E}^{+}generalizing Λ.

Background

Elliptic Hall Algebra

The (positive) elliptic Hall algebra \mathcal{E}^{+}of Burban-Schiffmann is the stable-limit of the (positive) spherical double affine Hecke algebras in type $G L_{n}$. The algebra \mathcal{E}^{+}is generated by the special elements $P_{0, \ell}, P_{r 0}$ for $\ell \in \mathbb{Z} \backslash\{0\}$ and $r>0$ which are limits of the special elements of the spherical double affine Hecke algebras

- $P_{0, \ell}:=\lim _{n} P_{0, \ell}^{(n)}=\lim _{n} \epsilon^{(n)}\left(\sum_{i=1}^{n} \theta_{i}^{\ell}\right) \epsilon^{(n)}$
- $P_{r, 0}:=\lim _{n} P_{r, 0}^{(n)}=\lim _{n} q^{r} \epsilon^{(n)}\left(\sum_{i=1}^{n} X_{i}^{r}\right) \epsilon^{(n)}$.

Here $\epsilon^{(n)}$ is the trivial Hecke idempotent and θ_{i} are the Cherednik elements.

Vector-Valued Polynomials

For a partition λ with size $|\lambda|=n$, Dunkl-Luque define the space of vector-valued (vv.) polynomials V_{λ} as

$$
V_{\lambda}:=\mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right] \otimes S
$$

where S_{λ} is the Specht-module corresponding to λ for the finite Hecke algebra with quadratic relation $\left(T_{i}-1\right)\left(T_{i}+t\right)=0$. The space S_{λ} has a distinguished basis $\left\{e_{\tau} \tau \tau\right.$ SYT $(\lambda)\}$ of weight vectors for the Jucys-Murphy elements. We define the operators

$$
T_{i}\left(x^{\alpha} \otimes v\right):=x^{s_{i}(\alpha)} \otimes T_{i}(v)+(1-t) \frac{x^{\alpha}-x^{s_{i}(\alpha)}}{x_{i}-x_{i+1}} \otimes v
$$

and

$$
\pi_{n}\left(x^{\alpha} \otimes v\right):=\left(q x_{1}\right)^{\alpha_{n}} x_{2}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n-1}} \otimes t^{n-1} T_{1}^{-1} \cdots T_{n-1}^{-1}(v) .
$$

We also define X_{i} as the obvious multiplication operator and using θ_{i} := $t^{-(n-i)} T_{i-1}^{-1} \cdots T_{1}^{-1} \pi_{n} T_{n-1} \cdots T_{i}$, we define the action of θ_{i}. These operators generate a representation of the (positive) double affine Hecke algebra of type $G L_{n}$. This representation admits a basis of θ-weight vectors $\left\{F_{\tau} \mid \tau \in \operatorname{PSYT}_{\geq 0}(\lambda)\right\}$ called the non-symmetric VV . Macdonald polynomials indexed by certain labelled diagrams $\tau \in \operatorname{PSYT}_{\geq 0}(\lambda)$ called
(non-negative) periodic stand (non-negative) periodic standard Young tableaux. By Hecke-symmetrizing using ϵ (n) reverse semi-standard Young tableaux of shape λ. These are a basis for $W_{\lambda}:=\epsilon^{(n)} V_{\lambda}$. We give a non-symmetric example here for the diagram $\frac{1 q / 2 q}{3} \in \operatorname{PSYT}_{\geq 0}(2,1)$:

$$
\begin{aligned}
& F_{\left[\frac{q q^{2 q}}{3}\right.}=t^{-2} X_{1} X_{2} \otimes e e_{\left.\frac{1-1}{3}\right]^{2}}+t^{-2}\left(\frac{1-t}{1-q t^{2}}\right) X_{2} X_{3} \otimes e e_{\left.\frac{1}{\frac{1}{2}}\right]^{3}} \\
& +\frac{t^{-2}}{1+t}\left(\frac{1-t}{1-q t^{2}}\right) X_{2} X_{3} \otimes e_{\frac{1}{3} 2^{2}}-t^{-3}\left(\frac{1-t}{1-q t^{2}}\right) X_{1} X_{3} \otimes e_{\frac{13}{2}}^{\frac{t^{-1}}{2}} \\
& +\frac{t^{-1}}{1+t}\left(\frac{1-t}{1-q t^{2}}\right) X_{1} X_{3} \otimes e_{\frac{1}{3} 2^{2}}
\end{aligned}
$$

Murnaghan-Type Representations

In the following result we see that there exist representations of \mathcal{E}^{+}which may be built In the followit from the spaces V_{λ} along certain sequences of partitions λ directly generalizing the following theorem involves carefully defining quotient maps $V_{\lambda} \rightarrow V_{\lambda^{\prime}}$ with exceptional stability properties.

For a partition λ and $n \geq n_{\lambda}:=|\lambda|+\lambda_{1}$ set $\lambda^{(n)}:=(n-|\lambda|, \lambda)$. Define $\Omega(\lambda)$ to be the set of (non-negative) reverse semi-standard fillings of the infinite diagram $\lambda^{(\infty)}$ which are 0 almost everywhere

Theorem 1 [BW 24]

For any partition λ there exists a stable-limit construction for the family of spherical double affine Hecke algebra modules $\left(W_{\lambda^{(n)}}\right)_{n \geq n_{\lambda}}$ generating a module W_{λ} for the positive elliptic Hall algebra \mathcal{E}^{+}. This space has a distinguished basis of weight vectors \mathfrak{P}_{T} for the action of $P_{0,1}$ called the generalized Macdonald functions indexed by $T \in \Omega(\lambda)$.

Examples

$\in \Omega(3,2,1)$.

The corresponding generalized Macdonald function \mathfrak{P}_{T} has X-degree $5+3+3+2+$ $1+3+2+1+1=21$ and is an eigenvector for the action of $P_{0,1}$ with eigenvalue $\left(q^{5}-1\right)+\left(q^{3}-1\right)\left(t^{-1}+t^{1}+t^{2}\right)+\left(q^{2}-1\right)\left(t^{0}+t^{3}\right)+(q-1)\left(t^{-2}+t^{-1}+t^{4}\right)$. Here $c(\square)$ is the content of the box \square.

Main Properties

- For $\lambda=\emptyset, \widetilde{W}_{\emptyset}=\Lambda$ and $\Omega(\emptyset)$ is naturally in bijection with the set of partitions. Further, in this case $\mathfrak{P}_{T}=P_{T}[X ; q, t]$ up to a scalar.
- For distinct partitions $\lambda \neq \mu, \widetilde{W}_{\lambda} \nexists \widetilde{W}_{\mu}$ as \mathcal{E}^{+}modules.
- Each \mathfrak{P}_{T} is the limit of the symmetric vv . Macdonald polynomials $P_{\left.T\right|_{\lambda^{(n)}}}$
- \mathfrak{P}_{T} is X-homogeneous of degree $\sum_{\square \in \lambda(\infty)} T(\square)$
- The spectrum of $P_{0,1}$ on \widetilde{W}_{λ} is simple and given by

$$
\left\{\sum_{\square \in \lambda(\infty)}\left(q^{T(\square)}-1\right) t^{c(\square)} \mid T \in \Omega(\lambda)\right\} .
$$

- Each of the representations \widetilde{W}_{λ} has a unique 1-dimensional subspace of minimal X-degree spanned by $\mathfrak{P}_{T_{\lambda}^{\text {min }}}$ where $T_{\lambda}^{\text {min }}$ is the unique element of $\Omega(\lambda)$ with minimal sum of entries given by $T_{\lambda}^{\text {min }}(\square):=\#\left\{\square^{\prime} \in \lambda^{(\infty)} \mid \square^{\prime}\right.$ strictly below $\left.\square\right\}$.
- Each \widetilde{W}_{λ} is a cyclic \mathcal{E}^{+}module generated by $\mathfrak{P}_{T_{\lambda}^{\text {min }}}$.
- The element $P_{r, 0}$ acts on \widetilde{W}_{λ} by multiplication by $q^{r} p_{r}[X]$.
- For all $\ell \in \mathbb{Z} \backslash\{0\}$

$$
P_{0, \ell}\left(\mathfrak{P}_{T}\right)=\left(\sum_{\square \in \lambda(\infty)}\left(q^{\ell T(\square)}-1\right) t^{\ell \subset(\square)}\right) \mathfrak{P}_{T}
$$

Pieri Rule

We find the following Pieri rule for the multiplication by e_{r}^{\bullet} map on \widetilde{W}_{λ} generalizing the ordinary Pieri rule for the symmetric Macdonald functions $P[X \cdot a, t]$ We achieve the ordinary Pieri rule for the symmetric Macdonald functions $P_{\lambda}[X ; q, t]$. We achieve
this formula by studying the combinatorics of the expansion of the P_{T} into the F_{τ} basis this formula by studying the combinatorics of the expansion of the P_{T} into the F_{τ} basis
coming from inversion sets and using a few techniques coming from double affine Hecke algebras. We give here only the finite rank Pieri rule for the P_{T} from which the full Pieri rule for the \mathfrak{P}_{T} may be directly inferred.

Theorem 2 [BW 24]

For $T \in \operatorname{RSSYT}_{\geq 0}(\lambda)$ and $1 \leq r \leq n$ we have the expansion

$$
e_{r}\left[X_{1}+\ldots+X_{n}\right] P_{T}=\sum_{S} d_{S, T}^{(r)} P_{S}
$$

where $d_{S, T}^{(r)}$ is the product of

$$
t^{\left({ }^{(}\right)} e_{r}\left[\frac{1-t^{n}}{1-t}\right] \frac{[\mu(S)]]^{\prime}!}{[n] t^{\prime}} \prod_{\left(\square_{1}, \square_{2}\right) \in \operatorname{lnv}(\min (S))}\left(\frac{q^{S\left(\square_{1}\right)} t^{c\left(\square_{1}\right)}-q^{S\left(\square_{2}\right)} t^{c\left(\square \square_{2}\right)+1}}{\left.\left.q^{S\left(\square_{1}\right) t^{c\left(\square \square_{1}\right)}-q^{S\left(\square_{2}\right)} t^{c(\square 2)}}\right)\right)}\right.
$$

and the sum

$$
\begin{aligned}
& \sum_{\tau \in \operatorname{PSYT}_{\mathrm{S}_{0}(\lambda, T)}} t^{c_{r}(1)+\ldots+c_{r}(r)} \\
& \prod_{\left.\square_{2}\right) \in \operatorname{Inv}(\tau)}\left(\frac{q^{T\left(\square_{1}\right)} t^{\left(\square_{1}\right)+1}-q^{T\left(\square_{2}\right)} t^{c\left(\square_{2}\right)}}{q^{T\left(\square_{1}\right)} t^{c\left(\square \square_{1}\right)}-q^{T\left(\square_{2}\right)} t^{\left(\square_{2}\right)}}\right) \times \\
& \Psi^{r}(\tau) \in \operatorname{PST} \mathrm{S}_{\mathrm{s}, 0}(\lambda ; S \\
& \prod_{\left(\nabla_{2}\right) \in \operatorname{lnv}\left(\Psi^{r}(\tau)\right)}\left(\frac{q^{S\left(\square_{1}\right)} t^{c\left(\square_{1}\right)}-q^{S\left(\square_{2}\right)} t^{c\left(\square_{2}\right)}}{q^{S\left(\square_{1}\right)} t^{c\left(\square_{1}\right)}-q^{S\left(\square_{2}\right)} t^{c\left(\square_{2}\right)+1}}\right)
\end{aligned}
$$

and S ranges over all $S \in \operatorname{RSSYT}_{\geq 0}(\lambda)$ one can obtain from T by adding r to the boxes of T with at most one 1 being added to each box. Further, $d_{S, T}^{(1)} \neq 0$ whenever S may be obtained from T by adding the value of 1 to a single box of T.

q, t Product-Series Identities

By understanding the expansions of the P_{T} into the F_{τ} and applying some elementary non-archimedean analysis techniques we find an interesting and nontrivial family of product-series identities in $\mathbb{Q}(q)((t))$. Here $\operatorname{APSYT}_{\geq 0}(\lambda)$ is the set of asymptotic periodic standard Young tableaux with basement shape λ which are certain labellings of $\lambda^{(\infty}$

Theorem 3 [BW 24$]$

For $T \in \Omega(\lambda)$ we have the following equality in $\mathbb{Q}(q)((t))$

$$
\begin{aligned}
& \sum_{\tau \in \operatorname{APSY} T_{T_{0}}(\lambda ; T)} t^{\operatorname{inv}(\tau)} \prod_{\left(\square_{1}, \square_{2}\right) \in \operatorname{Inv}(\tau)}\left(\frac{1-q^{T\left(\square_{2}\right)-T\left(\square_{1}\right)} t^{c\left(\square_{2}\right)-c\left(\square_{1}\right)-1}}{1-q^{T\left(\square_{2}\right)-T\left(\square_{1}\right)} t^{c\left(\square_{2}\right)-c\left(\square_{1}\right)+1}}\right)
\end{aligned}
$$

In particular, the above infinite series is actually rational i.e. in $\mathbb{Q}(q, t)$.

References

[^0]
[^0]: [1] Milo Bechtof Weising, Murnaghan -type representations of the eositive ellipitic Hall algebra, arivi.2405.00756 (2023).
 [2] . F. Dunk and J.-. Luque, vector valued Macdonald polynomials, Sem. Lothar. Combbin. 66 (2011/12), Art. B66b, 68 . MR2971011
 [3] Olivier Schiffmann and Eric Vasserot, The elliptic Hall lagebra and the K-theory of the Hilbert scheme of A^{2}. Duke Math. 1 I

