Cores and quotients of partitions

For each integer $t \geqslant 2$ the Littlewood decomposition of a partition is a bijection

$$
\lambda \longmapsto\left(t-\operatorname{core}(\lambda),\left(\lambda^{(0)}, \ldots, \lambda^{(t-1)}\right)\right)
$$

where

- t-core (λ) is partition with no hook of length t and
- $\left(\lambda^{(0)}, \ldots, \lambda^{(t-1)}\right)$ is a t-tuple of arbitrary partitions.

The quotient may be read off the Maya diagram:
$\mapsto-0 \cdot 0 \cdot 0000-\lambda^{(1)}$

部
To find t-core (λ) push all beads to the left in the picture on the right. Alternatively, define the charge $\mathbf{c}(\lambda)=\left(c_{0}, \ldots, c_{t-1}\right)$ by
$c_{r}:=$ \#beads at positive positions $-\#$ spaces at negative positions.
This restricts to a bijection
$\{t$-cores $\} \longleftrightarrow\left\{\left(c_{0}, \ldots, c_{t-1}\right) \in \mathbb{Z}^{t}: c_{0}+\cdots c_{t-1}=0\right\}$.
Our example is

$$
(6,5,2,2,1) \longleftrightarrow((3,1),((2),(1),(1)))
$$

and $\mathbf{c}((3,1))=(0,-1,1)$.

Ribbon tilings of skew shapes and signs

Recall a t-ribbon is an edge-connected skew shape with no 2×2 square and t-cells. Below are the four 3 -ribbon tilings of the skew shape $(6,5,2,2,1) /(3,1)$

In general for partitions $\mu \subseteq \lambda$
λ / μ tileable by t-ribbons $\Longleftrightarrow t$-core $(\lambda)=t$-core (μ) and $\mu^{(r)} \subseteq \lambda^{(r)}$
for each $0 \leqslant r \leqslant t-1$.
The height of a ribbon, ht (R) is one less than the number of rows. Given a tiling of λ / μ by ribbons R_{1}, \ldots, R_{m} we define the sign

$$
\operatorname{sgn}_{t}(\lambda / \mu):=(-1)^{\sum_{i=1}^{m} h t\left(R_{i}\right)} .
$$

It is a non-trivial fact that his sign depends only on the shape and not the tiling.

Frobenius notation

We may write partitions in their Frobenius coordinates as $\lambda=\left(\lambda_{1}-1, \ldots \lambda_{d}-d\right)$ $\left.\lambda_{1}^{\prime}-1, \ldots, \lambda_{d}^{\prime}-d\right)$ where $d:=\operatorname{rk}(\lambda)$ is the side-length of the Durfee square. Furthe let $\mathrm{rk}_{k}(\lambda)$ be the side length of the Durfee square of λ with its first k rows removed

Verschiebung operators and a particular plethysm
Fix an integer $t \geqslant 2$. The t-th Verschiebung operator is defined by

$$
\varphi_{t} h_{r}= \begin{cases}h_{r / t} & \text { if } t \mid r \\ 0 & \text { otherwise }\end{cases}
$$

This is the adjoint of plethysm by a power sum p_{t} with respect to the Hall inner product:

$$
\begin{equation*}
\left\langle f \circ p_{t}, g\right\rangle=\left\langle f, \varphi_{t} g\right\rangle \quad \text { for all } f, g \in \Lambda . \tag{1}
\end{equation*}
$$

Littlewood (and in some special cases with Richardson) computed the action of φ_{t} on the Schur functions. This was extended to skew Schur functions by Farahat (when $\mu=t$-core (λ)) and Macdonald (general μ).
Theorem (Littlewood, Richardson, Farahat, Macdonald): If the skew shape λ / μ is tileable by t-ribbons then

$$
\varphi_{t} \boldsymbol{s}_{\lambda / \mu}=\operatorname{sgn}_{t}(\lambda / \mu) \prod_{r=0}^{t-1} s_{\lambda(r)} / \mu^{(r)},
$$

otherwise $\varphi_{t} S_{\lambda / \mu}=0$

-asymmetric partitions and their Littlewood decomposition

Following Ayyer and Kumari we call a partition z-asymmetric if it has the form

$$
\left(a_{1}+z, \ldots, a_{d}+z \mid a_{1}, \ldots, a_{d}\right)
$$

for some $z \in \mathbb{Z}$. Note $(6,5,2,2,1)=(5,4 \mid 4,3)$ to the left is 1 -asymmetric (also variously called doubled distinct or threshold).
Using the well-known symmetry of the Littlewood decomposition

$$
\lambda^{\prime} \longleftrightarrow\left(t-\operatorname{core}(\lambda)^{\prime},\left(\left(\lambda^{(t-1)}\right)^{\prime}, \ldots,\left(\lambda^{(0)}\right)^{\prime}\right)\right)
$$

it follows that a partition λ is self-conjugate (0 -asymmetric) if and only if

$$
c_{r}+c_{t-r-1}=0 \quad \text { and } \quad \lambda^{(r)}=\left(\lambda^{(t-r-1)}\right)^{\prime} \quad \text { for } 0 \leqslant r \leqslant t-1,
$$

where $\mathbf{c}(t-\operatorname{core}(\lambda))=\left(c_{0}, \ldots, c_{t-1}\right)$.
This generalises to z-asymmetric partitions in a natural way.
Theorem: For $0 \leqslant z \leqslant t-1$ a partition is z-asymmetric if and only if the following hold: (i) $\mathbf{c}(t-\operatorname{core}(\lambda))=\left(c_{0}, \ldots, c_{t-1}\right)$ satisfies
$c_{r}+c_{z-r-1}=0 \quad$ for $0 \leqslant r \leqslant z-1 \quad$ and $\quad c_{s}+c_{t+z-s-1}=0 \quad$ for $z \leqslant s \leqslant t-1$; (ii) there exist partitions $\nu^{(0)}, \ldots, \nu^{(z-1)}$ such that for $0 \leqslant z \leqslant t-1$ and $c_{r} \geqslant 0$, $\lambda^{(r)}=\nu^{(r)}+\left(1^{c_{r}+r k_{c_{r}}\left(\nu^{(r)}\right)}\right)$ and $\lambda^{(z-r-1)}=\left(\nu^{(r)}\right)^{\prime}+\left(1^{r c_{c r}\left(\nu^{(r)}\right)}\right)$,
moreover, for $z \leqslant s \leqslant t-1$

$$
\lambda^{(s)}=\left(\lambda^{(t+z-s-1)}\right)^{\prime} .
$$

Example of the theorem

The 5 -quotient of $\lambda=(20,15,13,11,7,5 \mid 17,12,10,8,4,2)$, which is 3 -asymmetric and the charge of its 5-core:

Universal characters

The universal characters $\mathrm{sp}_{\lambda}, \mathrm{o}_{\lambda}$ and so ${ }_{\lambda}^{ \pm}$are symmetric function lifts of the characters of the symplectic and orthogonal groups, usually defined by Jacobi-Trudi-type determinants. The even orthogonal universal character is given by

$$
\mathrm{o}_{\lambda}:=\operatorname{det}_{1 \leqslant i, j \leqslant \ell(\lambda)}\left(h_{\lambda_{i}-i+j}-h_{\lambda_{i}-i-j}\right)=\sum_{\mu 1 \text {-asymmetric }}(-1)^{|\mu| / 2} s_{\lambda / \mu} .
$$

As one may expect, the factorisation of o_{λ} under φ_{t} is intimately connected with the $z=1$ case of the previous theorem (due to Garvan, Kim and Stanton).
Theorem (Lecouvey, Ayyer and Kumari, SA): If t-core (λ) is 1 -asymmetric then $\varphi_{t} 0_{\lambda}=(-1)^{|t-\operatorname{core}(\lambda)| / 2} \operatorname{sgn}_{t}(\lambda / t-\operatorname{core}(\lambda)) \mathrm{o}_{\lambda(0)} \prod_{r=1}^{\lfloor(t-1 / 2)\rfloor} \mathrm{rs}_{\lambda(r), \lambda(t-r)} \times \begin{cases}\mathrm{so}_{\lambda}^{-}(t / 2) & t \text { even }, \\ 1 & t \text { odd. }\end{cases}$
Otherwise $\varphi_{t} 0_{\lambda}=0$.
Here $\mathrm{rs}_{\lambda, \mu}$ is the universal character associated to the rational representation of $\mathrm{GL}_{n}(\mathbb{C})$ indexed by the pair of partitions (λ, μ).

A uniform extension

Bressoud and Wei introduced a uniform generalisation of the universal characters which may be defined by

$$
\chi_{\lambda}(z):=\sum_{\mu z \text {-asymmetric }}(-1)^{(|\mu|+(z-1) \mathrm{rk}(\mu)) / 2} s_{\lambda / \mu} .
$$

This also has a Jacobi-Trudi-type determinantal expression.
Theorem: For $0 \leqslant z \leqslant t-1$ we have $\varphi_{t} \chi_{\lambda}(z)=0$ unless $\mathbf{c}(t$-core $(\lambda))$ satisfies (i) from the column to the left and $\lambda \supseteq \nu_{\mathrm{c}}$, in which case

$$
\varphi_{t} \chi_{\lambda}(z)=\varepsilon \prod_{r=0}^{\lfloor(z-2 / 2)\rfloor} \mathrm{rS}_{\lambda(r), \lambda^{(t-r) ;} c_{r}}^{\left\lfloor\prod_{s=z}^{\lfloor(t+z-2) / 2\rfloor} \mathrm{rS}_{\lambda(s), \lambda^{(t+z-s-1)}} .{ }^{2} .\right.}
$$

$$
\times \begin{cases}1^{s=z} & z \& t \text { even }, \\ \mathrm{o}_{\lambda((z-1) / 2)} & z \& t \text { odd, }, \\ \mathrm{so}_{\lambda(t+z-1) / 2)} & z \text { even, } t \text { odd, }, \\ \mathrm{O}_{\lambda((z-1) / 2) \mathrm{so}_{\lambda((t+z-1) / 2)}^{-}} & z \text { odd, } t \text { even },\end{cases}
$$

where

$$
\varepsilon:=(-1)^{\left(\left|\nu_{\mathrm{c}}\right|+(z-1) \mathrm{rk}\left(\nu_{\mathrm{c}}\right)\right) / 2} \operatorname{sgn}_{t}\left(\lambda / \nu_{\mathrm{c}}\right),
$$

with ν_{c} defined below.
To recover the case of o_{λ} one sets $z=1$.

Small z-asymmetric partitions

Given an integer vector \mathbf{c} satisfying (i) to the left the minimal z-asymmetric partition with $\mathbf{c}(t-\operatorname{core}(\lambda))=\mathbf{c}$ has quotient

$$
\lambda^{(r)}=\left(1^{c_{r}}\right) \text { for } 0 \leqslant r \leqslant z-1 \text { with } c_{r}>0 \text {. }
$$

Denote this partition by $\nu_{\mathbf{c}}$. For example the 3 -core with $\mathbf{c}=(-2,2,0)$ has minimal 2-symmetric partition ($8,6,2,2,1,1$):

$$
(-2,2,0) \longrightarrow
$$

