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Flow graphs and flow polytopes

Definition

Let G be a directed graph on vertex set V = {1,...,n} and edge multiset E with
edges directed from smaller to larger vertices.
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Flow graphs and flow polytopes

Definition

Let G be a directed graph on vertex set V = {1,...,n} and edge multiset E with
edges directed from smaller to larger vertices.

@ A route in G is a path from a source to a sink.

@ The (unit) flow polytope of G is F¢ := conv{xg | R is a route in G},
where xr denotes the indicator vector of R.
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Framed graphs

Definition

@ For a vertex v in a directed graph G, a framing of G is a collection F of
linear orders <,(,), <out(v) On the incoming and outgoing edges at each v.

o A framed graph (G, F) is a graph with a framing F.
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Framing lattices

Definition

A maximal clique is a maximal collection of pairwise coherent routes.

6.1~ X

¢« W ¢« W

n/\/n I\_/\l

L e__A_”
A As

M. von Bell Framing lattices



Framing lattices

Definition

A maximal clique is a maximal collection of pairwise coherent routes.
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Define a cover relation:
A1 < Ay <= A, can be obtained from A; by a ccw rotation of a single route.
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Framing lattices

Definition

A maximal clique is a maximal collection of pairwise coherent routes.
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Define a cover relation:
A1 < Ay <= A, can be obtained from A; by a ccw rotation of a single route.

ccw rotation @

o=~
Q

The transitive closure of < is a poset £ r on maximal cliques!
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Framing lattices

Theorem (vB.—Ceballos, 2024+ )

The poset £ F is a semidistributive, polygonal, and congruence uniform lattice.
Moreover, the polygons appearing in £ F are squares, pentagons, or hexagons.

e Semidistributive: x V (y A z) = x V y whenever xVy = x V z; and
xA(yVz)=xAywhenever x \y = x A z.

@ Polygonal: The interval [x Ay, x V y] is a polygon when x and y cover x A y.
@ Congruence uniform: Obtainable from the singleton lattice via Day doublings.

M. von Bell

Framing lattices



Framing lattices

Theorem (vB.—Ceballos, 2024+ )

The poset £ F is a semidistributive, polygonal, and congruence uniform lattice.
Moreover, the polygons appearing in £ F are squares, pentagons, or hexagons.

e Semidistributive: x V (y A z) = x V y whenever xVy = x V z; and
xA(yVz)=xAywhenever x \y = x A z.

@ Polygonal: The interval [x Ay, x V y] is a polygon when x and y cover x A y.
@ Congruence uniform: Obtainable from the singleton lattice via Day doublings.

Proof outline:

1. Utilize the BEZ lemma for the lattice property and check cases.
2. Only squares, pentagons, and hexagons arise from these cases.
3. Use another BEZ lemma to prove semidistributivity.
4

. We show the lattice is an HH-lattice [Caspard—de Poly-Barbut—Morvan, '04],
which implies congruence uniformity.
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The flow polytope connection

Framing lattices live in flow polytopes!

@ Maximal cliques of routes in (G, F) are top-dimensional simplices in a regular
unimodular triangulation of F¢. [Danilov—Karzanov—Koshevoy,'12]
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The weak order on &,

The graph:
(oru(n), F) < D >+ >
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The weak order on ©

The graph:
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A weak order on multipermutations

Let s = (s1,%,...,5,) be a composition of some integer m.

The weak order can be extended to multipermutations of 112 ..
[Bennett-Birkhoff, 94]

The graph:

-,

multi-oru(s) := oru(n) with s; + 1 edges in segment i.

Example: s =(2,2,1)

(multi-oru(s), F) €= >
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A weak order on multipermutations

Let s = (s1,%,...,5,) be a composition of some integer m.
The weak order can be extended to multipermutations of 1%12%2 ... p%,
[Bennett-Birkhoff, 94]
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The s-weak order

The s-weak order is a lattice of 121-avoiding multipermutations.
[Ceballos—Pons,'22]
The graph: 3221
oru(s) := oru(n) with “whiskers".
321 2231
Example: s = (1,2,1)
3122

oru

1322 2123

1223 goru((lQ,l)J—')
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The s-weak order

The s-weak order is a lattice of 121-avoiding multipermutations.
[Ceballos—Pons,'22]

The graph: 3221
oru(s) := oru(n) with “whiskers".
321 2231
Example: s = (1,2,1)
3122

oru

1322 2123
Bigger example: s = (1,3,1,2)
Loru((1,2,1),F)
(oru(s), F) 1223
T 2 3 4

[Gonzélez D'Ledn, Morales, Philippe, Tamayo Jiménez, Yip, 2023]
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The Tamari Family

Tamari lattices:
The graph:
car(n) := the path s,1,...,n, t with added edges (s, /) and (i, t) for i € [n].

(car(n), F) N

s 1 t

S 1 2 t S 1 2 3 t
fcar(n),F [ O @
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The Tamari Family

Tamari lattices:

The graph:
car(n) := the path s,1,...,n, t with added edges (s, /) and (i, t) for i € [n].
(car(n), F) JaVa Ve
s 1t s 1 2 s 1 2 3 ¢t
.,E/ﬂcar(n),f: [ O
s-Tamari lattices:
The graph:

car(s) := car(n), but with s; copies of (s, /)

S = (51,52,...,Sn)
Example: s = (1,2) m
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A gallery of examples

Various framing lattices for car(3):
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Many unknowns

1. Can the Hasse-diagrams of framing lattices be realized as 1-skeletons of
polytopal complexes?
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Many unknowns

1. Can the Hasse-diagrams of framing lattices be realized as 1-skeletons of
polytopal complexes?

2. Which framings lattices have Hasse-diagrams that are 1-skeletons of
polytopes?

3. What conditions on G and F make the Hasse-diagram n-regular?

For a fixed graph, all framing lattices have the same number of linear intervals of
length k for every k > 0.

Example: The linear interval counts of the following are (5,5,2,0,...).

N S

It holds for alt v-Tamari lattices. [Ceballos—Cheneviére, 23]
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Thank you!
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