The characteristic quasi-polynomials for exceptional well-generated complex reflection groups

Shuhei Tsujie (Hokkaido University of Education) Joint work with Masamichi Kuroda (Nippon Bunri University)

FPSAC 2024 JULY 29, 2024 (Ruhr-Universität Bochum) Plan:

- 1. Hyperplane arrangements and characteristic polynomials
- 2. Characteristic quasi-polynomials
- 3. Generalization of characteristic quasi-polynomials
- 4. Result for complex reflection groups

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \, \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

$$L(\mathcal{A}) \coloneqq \left\{ \left. \bigcap_{H \in \mathcal{B}} H \neq \varnothing \right| \mathcal{B} \subseteq \mathcal{A} \right\} : \text{ The intersection poset}$$

The characteristic polynomial is defined by

$$\chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$$

where the Möbius function $\boldsymbol{\mu}$ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

The characteristic polynomial is defined by

$$\chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$$

where the Möbius function μ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

The characteristic polynomial is defined by

$$\chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$$

where the Möbius function μ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

The characteristic polynomial is defined by $\chi(\mathcal{A},t)\coloneqq \sum \mu(X)t^{\dim X},$

where the Möbius function μ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

 $X \in L(\mathcal{A})$

The characteristic polynomial is defined by $v(A \ t) := \sum u(X)t^{\dim X}$

$$\chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$$

where the Möbius function μ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

The characteristic polynomial is defined by $\chi(\mathcal{A}, t) \coloneqq \sum \mu(X) t^{\dim X}.$

$$\chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$$

where the Möbius function $\boldsymbol{\mu}$ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

The characteristic polynomial is defined by $\chi(A, t) := \sum \mu(X) t^{\dim X}$

$$\chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$$

where the Möbius function μ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

The characteristic polynomial is defined by $\chi(\mathcal{A},t)\coloneqq \sum_{X\in L(\mathcal{A})} \mu(X)t^{\dim X},$ where the Möbius function μ is defined by $\mu(\hat{0})\coloneqq 1, \qquad \mu(X)\coloneqq -\sum \mu(Y)$

Y < X

The characteristic polynomial is defined by $\chi(\mathcal{A},t)\coloneqq \sum_{X\in L(\mathcal{A})} \mu(X)t^{\dim X},$ where the Möbius function μ is defined by $\mu(\hat{0})\coloneqq 1, \qquad \mu(X)\coloneqq -\sum \mu(Y)$

Y < X

The characteristic polynomial is defined by $\chi(\mathcal{A},t) \coloneqq \sum \mu(X) t^{\dim X},$ $X \in L(\mathcal{A})$ where the Möbius function μ is defined by

$$\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y < X} \mu(Y)$$

The characteristic polynomial is defined by $\chi(\mathcal{A}, t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$ where the Möbius function μ is defined by $\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum_{Y \leq X} \mu(Y)$

$$2 \underbrace{1}_{-1} \underbrace{1}_{1} \underbrace{1}_{-1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{-1} \underbrace{1}_{1} \underbrace{1}$$

The characteristic polynomial is defined by $\chi(\mathcal{A},t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$ where the Möbius function μ is defined by $\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum \mu(Y)$

Y < X

The characteristic polynomial is defined by $\chi(\mathcal{A},t) \coloneqq \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim X},$ where the Möbius function μ is defined by $\mu(\hat{0}) \coloneqq 1, \qquad \mu(X) \coloneqq -\sum \mu(Y)$

V < X

Theorem (Zaslavsky) Let \mathcal{A} be an arrangement over \mathbb{R} . $|\chi(\mathcal{A}, -1)| = \#$ chambers $|\chi(\mathcal{A}, 1)| = \#$ bounded chambers

Theorem (Zaslavsky) Let \mathcal{A} be an arrangement over \mathbb{R} . $|\chi(\mathcal{A}, -1)| = \#$ chambers $|\chi(\mathcal{A}, 1)| = \#$ bounded chambers

Theorem (Zaslavsky) Let \mathcal{A} be an arrangement over \mathbb{R} . $|\chi(\mathcal{A}, -1)| = \#$ chambers $|\chi(\mathcal{A}, 1)| = \#$ bounded chambers

Proposition Let \mathcal{A} be an arrangement in \mathbb{F}_p^{ℓ} . Then $\chi(\mathcal{A}, p) = \#\left(\mathbb{F}_p^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H\right)$

Proposition Let \mathcal{A} be an arrangement in \mathbb{F}_p^{ℓ} . Then $\chi(\mathcal{A}, p) = \# \left(\mathbb{F}_p^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H \right)$

Proposition Let \mathcal{A} be an arrangement in \mathbb{F}_p^{ℓ} . Then $\chi(\mathcal{A}, p) = \# \left(\mathbb{F}_p^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H \right)$

Proposition Let \mathcal{A} be an arrangement in \mathbb{F}_p^{ℓ} . Then $\chi(\mathcal{A}, p) = \# \left(\mathbb{F}_p^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H \right)$

Let \mathcal{A} be an arrangement over \mathbb{Q} .

We may suppose that every hyperplane is defined by a linear equation with integer coefficients.

Let p be a prime large enough. Taking modulo p of the coefficients yields the arrangement \mathcal{A}_p over \mathbb{F}_p such that

 $L(\mathcal{A}) \simeq L(\mathcal{A}_p)$ and hence $\chi(\mathcal{A}, t) = \chi(\mathcal{A}_p, t)$.

Let ${\mathcal A}$ be an arrangement over ${\mathbb Q}.$

We may suppose that every hyperplane is defined by a linear equation with integer coefficients.

Let p be a prime large enough. Taking modulo p of the coefficients yields the arrangement \mathcal{A}_p over \mathbb{F}_p such that

$$L(\mathcal{A}) \simeq L(\mathcal{A}_p)$$
 and hence $\chi(\mathcal{A}, t) = \chi(\mathcal{A}_p, t)$.

Proposition (Finite Field Method)

Let \mathcal{A} be an arrangement in \mathbb{Q}^{ℓ} . Then there are infinitely many primes p such that

$$\chi(\mathcal{A}, p) = \# \left(\mathbb{F}_p^{\ell} \setminus \bigcup_{H \in \mathcal{A}_p} H \right)$$

Let q be a positive integer. We can consider "hyperplane" arrangement \mathcal{A}_q in $(\mathbb{Z}/q\mathbb{Z})^{\ell}$ by taking modulo q.

Remark

The equations x = 0 and 2x = 0 define the same hyperplane but if we take modulo 2, then they become different equations x = 0 and 0 = 0. Therefore we must fix the coefficients to consider the question above. From now on, let $\mathcal{A} = \{c_1, \ldots, c_n\}$ be a finite subset in \mathbb{Z}^{ℓ} (coefficient column vectors).

For any $\mathbb{Z}\text{-module }M,$ we define "hyperplane arrangement" $\mathcal{A}(M)$ by

$$H_i(M) \coloneqq \left\{ x \in M^\ell \mid xc_i = 0 \right\}, \mathcal{A}(M) \coloneqq \left\{ H_1(M), \dots, H_n(M) \right\}.$$

Theorem (Kamiya-Takemura-Terao (2008)) $\chi^{\text{quasi}}_{\mathcal{A}}$ is a quasi-polynomial in q. Namely, there exists a positive integer ρ (period) and polynomials $f^1_{\mathcal{A}}(t), \ldots, f^{\rho}_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ (constituents) such that $q \equiv k \pmod{\rho} \Longrightarrow \chi^{\text{quasi}}_{\mathcal{A}}(q) = f^k_{\mathcal{A}}(q).$

Moreover,

- The first constituent $f^1_{\mathcal{A}}(t)$ coincides with the characteristic polynomial $\chi(\mathcal{A}(\mathbb{Q}), t)$.
- We can compute a period by calculating elementary divisors of some submatrices of $(c_1 \cdots c_n)$.
- GCD-property:

 $\begin{aligned} &\gcd(k_1,\rho)=\gcd(k_2,\rho)\Longrightarrow f_{\mathcal{A}}^{k_1}(t)=f_{\mathcal{A}}^{k_2}(t) \\ &\text{Hence } \chi_{\mathcal{A}}^{\text{quasi}} \text{ is determined by constituents } f^k(t) \text{ such } \\ &\text{that } k \text{ is a divisor of } \rho. \end{aligned}$

Example

Question

Does every constituent $f^k_{\mathcal{A}}(t)$ have combinatorial meaning?

Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga) Every constituent comes from the **poset of layers** of the corresponding **toric arrangement**.

$$\mathcal{A}(\mathbb{C}^{\times}) = \{H_1(\mathbb{C}^{\times}), \dots, H_n(\mathbb{C}^{\times})\}: \text{ toric arrangement} \\ H_i(\mathbb{C}^{\times}) = \{ x \in (\mathbb{C}^{\times})^{\ell} \mid x_1^{c_{1i}} \cdots x_n^{c_{ni}} = 1 \}$$

We call a connected component of the intersection of some $H_i(\mathbb{C}^{\times})$'s a layer. Let $L(\mathcal{A}(\mathbb{C}^{\times}))$ denote the **poset of layers**. (The order is the reverse inclusion.) Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga) The k-th constituent $f^k_{\mathcal{A}}(t)$ is the characteristic polynomial of the poset $L(\mathcal{A}(\mathbb{C}^{\times}))[k]$ defined by

$$L(\mathcal{A}(\mathbb{C}^{\times}))[k] \coloneqq \left\{ \ Z \in L(\mathcal{A}(\mathbb{C}^{\times})) \ \middle| \ Z \text{ has a } k \text{-torsion} \ \right\}$$

More precisely,

$$f^k_{\mathcal{A}} = \sum_{Z \in L(\mathcal{A}(\mathbb{C}^{\times}))[k]} \mu(Z) t^{\dim Z}$$

Let Φ be a crystallographic root system and $\{\alpha_1,\ldots,\alpha_\ell\}$ its simple system.

Every root is an integral linear combination of simple roots. Let $\mathcal{A}_{\Phi} \subseteq \mathbb{Z}^{\ell}$ be the collection of the coefficient vectors. Example

 $\Phi = \Phi_{E_6}$. The period is $\rho = 6$.

$$f^{1}(t) = (t-1)(t-4)(t-5)(t-7)(t-8)(t-11)$$

$$f^{2}(t) = (t-2)(t-4)(t-8)(t-10)(t^{2}-12t+26)$$

$$f^{3}(t) = (t-3)(t-9)(t^{4}-24t^{3}+195t^{2}-612t+480)$$

$$f^{6}(t) = (t-6)^{2}(t^{4}-24t^{3}+186t^{2}-504t+480)$$

$$t \longleftrightarrow 12 - t \qquad \chi^{\text{quasi}}_{\mathcal{E}_6}(q) > 0 \Longleftrightarrow q \ge 12$$

 $h_{\rm E_6} = 12$ Coxeter number

Theorem (Kamiya–Takemura–Terao)
$$\chi^{\text{quasi}}_{\Phi}(q) > 0 \Longleftrightarrow q \ge h$$

Theorem (Kamiya–Takemura–Terao, Suter, Yoshinaga) $\chi^{\text{quasi}}_{\Phi}(q) = (-1)^{\ell} \chi^{\text{quasi}}_{\Phi}(h-q)$

type	period	Coxeter number
A_ℓ	1	$\ell + 1$
B_ℓ	2	2ℓ
C_{ℓ}	2	2ℓ
D_ℓ	2	$2\ell-2$
E_6	6	12
E_7	12	18
E_8	60	30
\mathbf{F}_4	12	12
G_2	6	6

type	period	Coxeter number
A_ℓ	1	$\ell + 1$
B_ℓ	2	2ℓ
C_{ℓ}	2	2ℓ
D_ℓ	2	$2\ell-2$
E_6	6	12
E_7	12	18
E_8	60	30
F_4	12	12
G_2	6	6

Theorem (Kamiya–Takemura–Terao, Suter) The radical of the period ρ divides the Coxeter number h.

type	period	Coxeter number
A_ℓ	1	$\ell + 1$
B_ℓ	2	2ℓ
C_{ℓ}	2	2ℓ
D_ℓ	2	$2\ell-2$
E_6	6	12
E_7	12	18
E_8	60	30
F_4	12	12
G_2	6	6

Theorem (Kamiya–Takemura–Terao, Suter) The radical of the period ρ divides the Coxeter number h.

From this property we have

$$gcd(q, \rho) = 1 \iff gcd(h - q, \rho) = 1$$
$$\chi(\mathcal{A}_{\Phi}(\mathbb{Q}), t) = (-1)^{\ell} \chi(\mathcal{A}_{\Phi}(\mathbb{Q}), h - t)$$

Question

How can we generalize the characteristic quasi-polynomial?

A generalization must be related with

Question

How can we generalize the characteristic quasi-polynomial?

- A generalization must be related with
 - Elementary divisors.

(Structure theorem of finitely generated module)

Question

How can we generalize the characteristic quasi-polynomial?

- A generalization must be related with
 - Elementary divisors. (Structure theorem of finitely generated module)
 - Greatest common divisors. (Unique factorization into primes)

Question

How can we generalize the characteristic quasi-polynomial?

- A generalization must be related with
 - Elementary divisors. (Structure theorem of finitely generated module)
 - Greatest common divisors. (Unique factorization into primes)
- → We consider **Dedekind domains**!

Let \mathcal{O} be a Dedekind domain such that the residue ring \mathcal{O}/\mathfrak{a} is finite for any nonzero ideal \mathfrak{a} of \mathcal{O} .

Example $\mathbb{Z}, \mathbb{Z}[\sqrt{-1}], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\frac{-1+\sqrt{-3}}{2}], \mathbb{F}_q[t]$

Let $\mathcal{A} = \{c_1, \ldots, c_n\} \subseteq \mathcal{O}^{\ell}$ be a finite subset (coefficient column vectors).

Given an \mathcal{O} -module M,

$$H_i(M) \coloneqq \left\{ x \in M^\ell \mid xc_i = 0 \right\}, \mathcal{A}(M) \coloneqq \left\{ H_1(M), \dots, H_n(M) \right\}.$$

Let \mathfrak{a} be a nonzero ideal of \mathcal{O} . Define $\chi^{\text{quasi}}_{\mathcal{A}}(\mathfrak{a})$ by

$$\chi^{\mathrm{quasi}}_{\mathcal{A}}(\mathfrak{a}) = \# \left((\mathcal{O}/\mathfrak{a})^{\ell} \setminus \bigcup_{H \in \mathcal{A}(\mathcal{O}/\mathfrak{a})} H \right)$$

Theorem (Kuroda-T (2024))

 $\chi^{\text{quasi}}_{\mathcal{A}}(\mathfrak{a})$ behaves like a quasi-polynomial with GCD-property. Namely, there exist a nonzero ideal ρ (period) and polynomials $f^{\kappa}_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ for each divisor κ of ρ (constituent) such that

$$\mathfrak{a} + \rho = \kappa \Longrightarrow \chi^{\text{quasi}}_{\mathcal{A}}(\mathfrak{a}) = f^{\kappa}_{\mathcal{A}}(N(\mathfrak{a})),$$

where $N(\mathfrak{a})$ denotes the absolute norm of \mathfrak{a} defined by

 $N(\mathfrak{a}) = \#(\mathcal{O}/\mathfrak{a})$

Moreover,

- $f_{\mathcal{A}}^{\langle 1 \rangle}(t) = \chi(\mathcal{A}(K), t)$, where K is the field of fractions \mathcal{O} .
- Every constituent comes from the poset $L(\mathcal{A}(K/\mathcal{O}))$.

Non-crystallographic root systems H_3 and H_4 are defined over the Dedekind domain $\mathbb{Z}[\frac{1+\sqrt{5}}{2}].$ Moreover, every complex reflection group admit a "root system" over a Dedekind domain defined by Lehrer and Taylor. Now, we can consider the characteristic quasi-polynomials for these root systems.

We are **lucky** if they have interesting properties.

Example

Consider G_{33} . The ring of definition is $\mathcal{O} = \mathbb{Z}[\frac{-1+\sqrt{-3}}{2}]$ and the period is $\rho = \langle 2\sqrt{-3} \rangle$. The Coxeter number is h = 18.

$$\begin{split} f^{\langle 1 \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 17169t - 12285. \\ &= (t-1)(t-7)(t-9)(t-13)(t-15). \\ f^{\langle 2 \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 17574t - 18360. \\ &= (t-4)(t-15)(t^3 - 26t^2 + 196t - 306). \\ f^{\langle \sqrt{-3} \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 18129t - 20925. \\ &= (t-3)(t-9)(t^3 - 33t^2 + 327t - 775). \\ f^{\langle 2\sqrt{-3} \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 18534t - 27000. \end{split}$$

Non-crystallographic root systems H_3 and H_4 are defined over the Dedekind domain $\mathbb{Z}[\frac{1+\sqrt{5}}{2}].$ Moreover, every complex reflection group admit a "root system" over a Dedekind domain defined by Lehrer and Taylor. Now, we can consider the characteristic quasi-polynomials for these root systems.

We are **lucky** if they have interesting properties.

Example

Consider G_{33} . The ring of definition is $\mathcal{O} = \mathbb{Z}[\frac{-1+\sqrt{-3}}{2}]$ and the period is $\rho = \langle 2\sqrt{-3} \rangle$. The Coxeter number is h = 18.

$$\begin{split} f^{\langle 1 \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 17169t - 12285. \\ &= (t-1)(t-7)(t-9)(t-13)(t-15). \\ f^{\langle 2 \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 17574t - 18360. \\ &= (t-4)(t-15)(t^3 - 26t^2 + 196t - 306). \\ f^{\langle \sqrt{-3} \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 18129t - 20925. \\ &= (t-3)(t-9)(t^3 - 33t^2 + 327t - 775). \\ f^{\langle 2\sqrt{-3} \rangle}(t) &= t^5 - 45t^4 + 750t^3 - 5590t^2 + 18534t - 27000. \end{split}$$

We computed the period for the case G is exceptional, well-generated, and irreducible.

	1			1			
_ <u>G</u>	0	ρ	h_{-}	$G_{22} = H_2$	$\mathbb{Z}[\tau]$	(2)	10
G_4	$\mathbb{Z}[\omega]$	$\langle 1 \rangle$	6	Gau	$\mathbb{Z}[\lambda]$	4	14
G_5	$\mathbb{Z}[\omega]$	$\langle 2\sqrt{-3} \rangle$	12	C 24	77[]		12
G	$\mathbb{Z}[i]$	(1+i)	12	G25	$\mathbb{Z}[\omega]$	$\langle \sqrt{-3} \rangle$	12
00		(1)	10	G26	$\mathbb{Z}[\omega]$	$\langle 6 \rangle$	18
G8	$\mathbb{Z}[1]$	$\langle 1+i\rangle$	12	G27	$\mathbb{Z}[\omega,\tau]$	$\langle 4\sqrt{-3} \rangle$	30
G_9	$\mathbb{Z}[\zeta_8]$	$\langle 6 \rangle$	24	$G_{28} = F_4$	Z	(12)	12
G_{10}	$\mathbb{Z}[i,\omega]$	$\langle (1+i)\sqrt{-3} \rangle$	24	G ₂₉	$\mathbb{Z}[i]$	$\langle 10(1+i) \rangle$	20
G_{14}	$\mathbb{Z}[\omega, \sqrt{-2}]$	$\langle 6 \rangle$	24	$G_{30} = H_4$	$\mathbb{Z}[\tau]$	$\langle 6\sqrt{5} \rangle$	30
G_{16}	$\mathbb{Z}[\zeta_5]$	$\langle 1-\zeta_5 \rangle$	30	G ₃₂	$\mathbb{Z}[\omega]$	$\langle 2\sqrt{-3} \rangle$	30
G_{17}	$\mathbb{Z}[i,\zeta_5]$	$\langle 6\sqrt{5} \rangle$	60	G ₃₃	$\mathbb{Z}[\omega]$	$\langle 2\sqrt{-3} \rangle$	18
G_{18}	$\mathbb{Z}[\omega, \zeta_5]$	$(2\sqrt{-3}(1-\zeta_{15}^3))$	60	G ₃₄	$\mathbb{Z}[\omega]$	$\langle 84 \rangle$	42
G_{20}	$\mathbb{Z}[\omega, \tau]$	$\langle 2\sqrt{-3} \rangle$	30	$G_{35} = E_6$	Z	$\langle 6 \rangle$	12
G21	$\mathbb{Z}[i,\omega,\tau]$	$\langle 6\sqrt{5} \rangle$	60	$G_{36} = E_7$	Z	(12)	18
-21	[[-,,-]	(- • - /		$G_{37} = E_8$	Z	$\langle 60 \rangle$	30

$$i = \sqrt{-1}, \ \omega = \frac{-1 + \sqrt{-3}}{2}, \ \tau = \frac{1 + \sqrt{5}}{2}, \ \lambda = \frac{-1 + \sqrt{-7}}{2}, \ \zeta_k = e^{2\pi i/k}.$$

We computed the period for the case G is exceptional, well-generated, and irreducible.

G	0	ρ	h	С — Н	7[-]	(2)	10
G_4	$\mathbb{Z}[\omega]$	$\langle 1 \rangle$	6	$G_{23} = \Pi_3$		(4)	10
G	$\mathbb{Z}[\omega]$	$(2\sqrt{-3})$	12	G ₂₄	$\mathbb{Z}[\Lambda]$	(4)	14
с,	77[:]	(1)	10	G ₂₅	$\mathbb{Z}[\omega]$	$\langle \sqrt{-3} \rangle$	12
G ₆	$\mathbb{Z}[i,\omega]$	$\langle 1+l \rangle$	12	G ₂₆	$\mathbb{Z}[\omega]$	$\langle 6 \rangle$	18
G_8	$\mathbb{Z}[i]$	$\langle 1+i \rangle$	12	G27	$\mathbb{Z}[\omega,\tau]$	$\langle 4\sqrt{-3} \rangle$	30
G9	$\mathbb{Z}[\zeta_8]$	$\langle 6 \rangle$	24	$G_{28} = F_4$	Z	(12)	12
G_{10}	$\mathbb{Z}[i,\omega]$	$\langle (1+i)\sqrt{-3} \rangle$	24	G ₂₉	$\mathbb{Z}[i]$	$\langle 10(1+i) \rangle$	20
G_{14}	$\mathbb{Z}[\omega, \sqrt{-2}]$	$\langle 6 \rangle$	24	$G_{30} = H_4$	$\mathbb{Z}[\tau]$	$\langle 6\sqrt{5} \rangle$	30
G_{16}	$\mathbb{Z}[\zeta_5]$	$\langle 1-\zeta_5 \rangle$	30	G ₃₂	$\mathbb{Z}[\omega]$	$\langle 2\sqrt{-3} \rangle$	30
G ₁₇	$\mathbb{Z}[i, \zeta_5]$	$\langle 6\sqrt{5} \rangle$	60	G ₃₃	$\mathbb{Z}[\omega]$	$\langle 2\sqrt{-3} \rangle$	18
G_{18}	$\mathbb{Z}[\omega, \zeta_5]$	$(2\sqrt{-3}(1-\zeta_{15}^3))$	60	G_{34}	$\mathbb{Z}[\omega]$	$\langle 84 \rangle$	42
G ₂₀	$\mathbb{Z}[\omega, \tau]$	$\langle 2\sqrt{-3} \rangle$	30	$G_{35} = E_6$	Z	$\langle 6 \rangle$	12
G21	$\mathbb{Z}[i,\omega,\tau]$	$\langle 6\sqrt{5} \rangle$	60	$G_{36} = E_7$	Z	$\langle 12 \rangle$	18
41		1 /		$G_{37} = E_8$	Z	$\langle 60 \rangle$	30

$$i = \sqrt{-1}, \omega = \frac{-1 + \sqrt{-3}}{2}, \tau = \frac{1 + \sqrt{5}}{2}, \lambda = \frac{-1 + \sqrt{-7}}{2}, \zeta_k = e^{2\pi i/k}.$$
 Lucky?

We computed the period for the case G is exceptional, well-generated, and irreducible.

G	0	ρ	h	C II		(2)	10
G_4	$\mathbb{Z}[\omega]$	$\langle 1 \rangle$	6	$G_{23} = H_3$	$\mathbb{Z}[\tau]$	(2)	10
G	$\mathbf{Z}[\omega]$	$(2\sqrt{-3})$	12	G24		(4)	14
C	77[]	(1 + i)	10	G_{25}	$\mathbb{Z}[\omega]$	$\langle \sqrt{-3} \rangle$	12
G ₆	$\mathbb{Z}[i,\omega]$	(1+i)	12	G_{26}	$\mathbb{Z}[\omega]$	$\langle 6 \rangle$	18
G_8	$\mathbb{Z}[i]$	$\langle 1+i \rangle$	12	G27	$\mathbb{Z}[\omega,\tau]$	$\langle 4\sqrt{-3} \rangle$	30
G9	$\mathbb{Z}[\zeta_8]$	$\langle 6 \rangle$	24	$G_{28} = F_4$	Z	(12)	12
G_{10}	$\mathbb{Z}[i,\omega]$	$\langle (1+i)\sqrt{-3} \rangle$	24	G ₂₉	$\mathbb{Z}[i]$	$\langle 10(1+i) \rangle$	20
G_{14}	$\mathbb{Z}[\omega, \sqrt{-2}]$	$\langle 6 \rangle$	24	$G_{30} = H_4$	$\mathbb{Z}[\tau]$	$\langle 6\sqrt{5} \rangle$	30
G_{16}	$\mathbb{Z}[\zeta_5]$	$\langle 1-\zeta_5 \rangle$	30	G ₃₂	$\mathbb{Z}[\omega]$	$\langle 2\sqrt{-3} \rangle$	30
G ₁₇	$\mathbb{Z}[i,\zeta_5]$	$\langle 6\sqrt{5} \rangle$	60	G ₃₃	$\mathbb{Z}[\omega]$	$\langle 2\sqrt{-3} \rangle$	18
G ₁₈	$\mathbb{Z}[\omega, \zeta_5]$	$(2\sqrt{-3}(1-\zeta_{15}^3))$	60	G ₃₄	$\mathbb{Z}[\omega]$	$\langle 84 \rangle$	42
G_{20}	$\mathbb{Z}[\omega,\tau]$	$\langle 2\sqrt{-3} \rangle$	30	$G_{35} = E_6$	Z	$\langle 6 \rangle$	12
G21	$\mathbb{Z}[i,\omega,\tau]$	$\langle 6\sqrt{5} \rangle$	60	$G_{36} = E_7$	Z	$\langle 12 \rangle$	18
21	[, ,]	(, , , ,		$G_{37} = E_8$	Z	$\langle 60 \rangle$	30
	$i = \sqrt{-}$	$-1, \omega = \frac{-1 + \sqrt{-3}}{2}, \tau$	$=\frac{1+\sqrt{2}}{2}$	$\sqrt{5}, \lambda = \frac{-1+1}{2}$	$\frac{\sqrt{-7}}{2}, \zeta_k = e^{2i}$	<i>πi/k</i> .	Lucky?

Theorem (Kuroda-T)

Every exceptional well-generated irreducible complex reflection group G admits "root system" such that the radical of the period divides the Coxeter number.