The characteristic

 quasi-polynomials for exceptional well-generated complex reflection groupsShuhei Tsujie (Hokkaido University of Education) Joint work with Masamichi Kuroda (Nippon Bunri University)

FPSAC 2024
JULY 29, 2024 (Ruhr-Universität Bochum)

Plan:

1. Hyperplane arrangements and characteristic polynomials
2. Characteristic quasi-polynomials
3. Generalization of characteristic quasi-polynomials
4. Result for complex reflection groups
\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

\mathcal{A} : Hyperplane arrangement (finite collection of hyperplanes)
$L(\mathcal{A}):=\left\{\bigcap_{H \in \mathcal{B}} H \neq \varnothing \mid \mathcal{B} \subseteq \mathcal{A}\right\}:$ The intersection poset

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X}
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

The characteristic polynomial is defined by

$$
\chi(\mathcal{A}, t):=\sum_{X \in L(\mathcal{A})} \mu(X) t^{\operatorname{dim} X},
$$

where the Möbius function μ is defined by

$$
\mu(\hat{0}):=1, \quad \mu(X):=-\sum_{Y<X} \mu(Y)
$$

Theorem (Zaslavsky)
Let \mathcal{A} be an arrangement over \mathbb{R}.

$$
\begin{aligned}
|\chi(\mathcal{A},-1)| & =\# \text { chambers } \\
|\chi(\mathcal{A}, 1)| & =\text { \#bounded chambers }
\end{aligned}
$$

Theorem (Zaslavsky)
Let \mathcal{A} be an arrangement over \mathbb{R}.

$$
\begin{aligned}
|\chi(\mathcal{A},-1)| & =\# \text { chambers } \\
|\chi(\mathcal{A}, 1)| & =\text { \#bounded chambers }
\end{aligned}
$$

Theorem (Zaslavsky)
Let \mathcal{A} be an arrangement over \mathbb{R}.

$$
\begin{aligned}
|\chi(\mathcal{A},-1)| & =\text { \#chambers } \\
|\chi(\mathcal{A}, 1)| & =\text { \#bounded chambers }
\end{aligned}
$$

Proposition

Let \mathcal{A} be an arrangement in \mathbb{F}_{p}^{ℓ}. Then

$$
\chi(\mathcal{A}, p)=\#\left(\mathbb{F}_{p}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H\right)
$$

$\chi(\mathcal{A}, p)=p^{2}-4 p+5$

Proposition

Let \mathcal{A} be an arrangement in \mathbb{F}_{p}^{ℓ}. Then

$$
\chi(\mathcal{A}, p)=\#\left(\mathbb{F}_{p}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H\right)
$$

$\chi(\mathcal{A}, p)=p^{2}-4 p+5$

p^{2}

Proposition

Let \mathcal{A} be an arrangement in \mathbb{F}_{p}^{ℓ}. Then

$$
\chi(\mathcal{A}, p)=\#\left(\mathbb{F}_{p}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H\right)
$$

$\chi(\mathcal{A}, p)=p^{2}-4 p+5$

p^{2}

$-4 p$

Proposition

Let \mathcal{A} be an arrangement in \mathbb{F}_{p}^{ℓ}. Then

$$
\chi(\mathcal{A}, p)=\#\left(\mathbb{F}_{p}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H\right)
$$

$\chi(\mathcal{A}, p)=p^{2}-4 p+5$

p^{2}

$-4 p$

5

Let \mathcal{A} be an arrangement over \mathbb{Q}.
We may suppose that every hyperplane is defined by a linear equation with integer coefficients.
Let p be a prime large enough. Taking modulo p of the coefficients yields the arrangement \mathcal{A}_{p} over \mathbb{F}_{p} such that

$$
L(\mathcal{A}) \simeq L\left(\mathcal{A}_{p}\right) \text { and hence } \chi(\mathcal{A}, t)=\chi\left(\mathcal{A}_{p}, t\right)
$$

Let \mathcal{A} be an arrangement over \mathbb{Q}.
We may suppose that every hyperplane is defined by a linear equation with integer coefficients.
Let p be a prime large enough. Taking modulo p of the coefficients yields the arrangement \mathcal{A}_{p} over \mathbb{F}_{p} such that

$$
L(\mathcal{A}) \simeq L\left(\mathcal{A}_{p}\right) \text { and hence } \chi(\mathcal{A}, t)=\chi\left(\mathcal{A}_{p}, t\right) .
$$

Proposition (Finite Field Method)

 Let \mathcal{A} be an arrangement in \mathbb{Q}^{ℓ}. Then there are infinitely many primes p such that$$
\chi(\mathcal{A}, p)=\#\left(\mathbb{F}_{p}^{\ell} \backslash \bigcup_{H \in \mathcal{A}_{p}} H\right)
$$

Let q be a positive integer.
We can consider "hyperplane" arrangement \mathcal{A}_{q} in $(\mathbb{Z} / q \mathbb{Z})^{\ell}$ by taking modulo q.

Question

Does the counting function in q

$$
\#\left((\mathbb{Z} / q \mathbb{Z})^{\ell} \backslash \bigcup_{H \in \mathcal{A}_{q}} H\right)
$$

have interesting property?

Remark

The equations $x=0$ and $2 x=0$ define the same hyperplane but if we take modulo 2 , then they become different equations $x=0$ and $0=0$. Therefore we must fix the coefficients to consider the question above.

From now on, let $\mathcal{A}=\left\{c_{1}, \ldots, c_{n}\right\}$ be a finite subset in \mathbb{Z}^{ℓ} (coefficient column vectors).
For any \mathbb{Z}-module M, we define "hyperplane arrangement" $\mathcal{A}(M)$ by

$$
\begin{aligned}
H_{i}(M) & :=\left\{x \in M^{\ell} \mid x c_{i}=0\right\}, \\
\mathcal{A}(M) & :=\left\{H_{1}(M), \ldots, H_{n}(M)\right\} .
\end{aligned}
$$

Define the characteristic quasi-polynomial $\chi_{\mathcal{A}}^{\text {quasi }}$ by

$$
\chi_{\mathcal{A}}^{\text {quasi }}(q):=\#\left((\mathbb{Z} / q \mathbb{Z})^{\ell} \backslash \bigcup_{H \in \mathcal{A}(\mathbb{Z} / q \mathbb{Z})} H\right)
$$

Theorem (Kamiya-Takemura-Terao (2008))
$\chi_{\mathcal{A}}^{\text {quasi }}$ is a quasi-polynomial in q. Namely, there exists a positive integer ρ (period) and polynomials $f_{\mathcal{A}}^{1}(t), \ldots, f_{\mathcal{A}}^{\rho}(t) \in \mathbb{Z}[t]$ (constituents) such that

$$
q \equiv k \quad(\bmod \rho) \Longrightarrow \chi_{\mathcal{A}}^{\text {quasi }}(q)=f_{\mathcal{A}}^{k}(q) .
$$

Moreover,

- The first constituent $f_{\mathcal{A}}^{1}(t)$ coincides with the characteristic polynomial $\chi(\mathcal{A}(\mathbb{Q}), t)$.
- We can compute a period by calculating elementary divisors of some submatrices of $\left(c_{1} \cdots c_{n}\right)$.
- GCD-property:
$\operatorname{gcd}\left(k_{1}, \rho\right)=\operatorname{gcd}\left(k_{2}, \rho\right) \Longrightarrow f_{\mathcal{A}}^{k_{1}}(t)=f_{\mathcal{A}}^{k_{2}}(t)$ Hence $\chi_{\mathcal{A}}^{\text {quasi }}$ is determined by constituents $f^{k}(t)$ such that k is a divisor of ρ.

Example

$$
\begin{aligned}
& \mathcal{A}=\left\{\binom{1}{0},\binom{0}{1},\binom{1}{-1},\binom{1}{1}\right\}, \quad \rho=2 \\
& f_{\mathcal{A}}^{1}(t)=(t-1)(t-3)=\chi(\mathcal{A}(\mathbb{Q}), t), \\
& f_{\mathcal{A}}^{2}(t)=(t-2)^{2} \\
& q=5 \\
& q=6
\end{aligned}
$$

Question
 Does every constituent $f_{\mathcal{A}}^{k}(t)$ have combinatorial meaning?

Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga) Every constituent comes from the poset of layers of the corresponding toric arrangement.

$$
\begin{aligned}
\mathcal{A}\left(\mathbb{C}^{\times}\right) & =\left\{H_{1}\left(\mathbb{C}^{\times}\right), \ldots, H_{n}\left(\mathbb{C}^{\times}\right)\right\}: \text {toric arrangement } \\
H_{i}\left(\mathbb{C}^{\times}\right) & =\left\{x \in\left(\mathbb{C}^{\times}\right)^{\ell} \mid x_{1}^{c_{1 i}} \cdots x_{n}^{c_{n i}}=1\right\}
\end{aligned}
$$

We call a connected component of the intersection of some $H_{i}\left(\mathbb{C}^{\times}\right)$'s a layer.
Let $L\left(\mathcal{A}\left(\mathbb{C}^{\times}\right)\right)$denote the poset of layers. (The order is the reverse inclusion.)

Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga)

 The k-th constituent $f_{\mathcal{A}}^{k}(t)$ is the characteristic polynomial of the poset $L\left(\mathcal{A}\left(\mathbb{C}^{\times}\right)\right)[k]$ defined by$$
L\left(\mathcal{A}\left(\mathbb{C}^{\times}\right)\right)[k]:=\left\{Z \in L\left(\mathcal{A}\left(\mathbb{C}^{\times}\right)\right) \mid Z \text { has a } k \text {-torsion }\right\} .
$$

More precisely,

$$
f_{\mathcal{A}}^{k}=\sum_{Z \in L\left(\mathcal{A}\left(\mathbb{C}^{\times}\right)\right)[k]} \mu(Z) t^{\operatorname{dim} Z}
$$

Let Φ be a crystallographic root system and $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ its simple system.
Every root is an integral linear combination of simple roots.
Let $\mathcal{A}_{\Phi} \subseteq \mathbb{Z}^{\ell}$ be the collection of the coefficient vectors.
Example
$\Phi=\Phi_{\mathrm{E}_{6}}$. The period is $\rho=6$.

$$
\begin{aligned}
f^{1}(t) & =(t-1)(t-4)(t-5)(t-7)(t-8)(t-11) \\
f^{2}(t) & =(t-2)(t-4)(t-8)(t-10)\left(t^{2}-12 t+26\right) \\
f^{3}(t) & =(t-3)(t-9)\left(t^{4}-24 t^{3}+195 t^{2}-612 t+480\right) \\
f^{6}(t) & =(t-6)^{2}\left(t^{4}-24 t^{3}+186 t^{2}-504 t+480\right) \\
t & \longleftrightarrow 12-t \quad \chi_{\mathrm{E}_{6}}^{\text {quasi }}(q)>0 \Longleftrightarrow q \geq 12 \\
& h_{\mathrm{E}_{6}}=12 \quad \text { Coxeter number }
\end{aligned}
$$

Theorem (Kamiya-Takemura-Terao)

$$
\chi_{\Phi}^{\text {quasi }}(q)>0 \Longleftrightarrow q \geq h
$$

Theorem (Kamiya-Takemura-Terao, Suter, Yoshinaga)

$$
\chi_{\Phi}^{\text {quasi }}(q)=(-1)^{\ell} \chi_{\Phi}^{\text {quasi }}(h-q)
$$

type	period	Coxeter number
A_{ℓ}	1	$\ell+1$
$\mathrm{~B}_{\ell}$	2	2ℓ
C_{ℓ}	2	2ℓ
D_{ℓ}	2	$2 \ell-2$
E_{6}	6	12
E_{7}	12	18
E_{8}	60	30
$\mathrm{~F}_{4}$	12	12
G_{2}	6	6

type	period	Coxeter number
A_{ℓ}	1	$\ell+1$
$\mathrm{~B}_{\ell}$	2	2ℓ
C_{ℓ}	2	2ℓ
D_{ℓ}	2	$2 \ell-2$
E_{6}	6	12
E_{7}	12	18
E_{8}	60	30
$\mathrm{~F}_{4}$	12	12
G_{2}	6	6

Theorem (Kamiya-Takemura-Terao, Suter) The radical of the period ρ divides the Coxeter number h.

type	period	Coxeter number
A_{ℓ}	1	$\ell+1$
$\mathrm{~B}_{\ell}$	2	2ℓ
C_{ℓ}	2	2ℓ
D_{ℓ}	2	$2 \ell-2$
E_{6}	6	12
E_{7}	12	18
E_{8}	60	30
$\mathrm{~F}_{4}$	12	12
G_{2}	6	6

Theorem (Kamiya-Takemura-Terao, Suter) The radical of the period ρ divides the Coxeter number h.
From this property we have

$$
\begin{gathered}
\operatorname{gcd}(q, \rho)=1 \Longleftrightarrow \operatorname{gcd}(h-q, \rho)=1 \\
\chi\left(\mathcal{A}_{\Phi}(\mathbb{Q}), t\right)=(-1)^{\ell} \chi\left(\mathcal{A}_{\Phi}(\mathbb{Q}), h-t\right)
\end{gathered}
$$

Thus, the characteristic quasi-polynomial is very interesting. However, it can be defined only for arrangements over \mathbb{Z}.

Question

How can we generalize the characteristic quasi-polynomial?

A generalization must be related with

Thus, the characteristic quasi-polynomial is very interesting. However, it can be defined only for arrangements over \mathbb{Z}.

Question
How can we generalize the characteristic quasi-polynomial?
A generalization must be related with

- Elementary divisors. (Structure theorem of finitely generated module)

Thus, the characteristic quasi-polynomial is very interesting. However, it can be defined only for arrangements over \mathbb{Z}.

Question
How can we generalize the characteristic quasi-polynomial?
A generalization must be related with

- Elementary divisors.
(Structure theorem of finitely generated module)
- Greatest common divisors.
(Unique factorization into primes)

Thus, the characteristic quasi-polynomial is very interesting. However, it can be defined only for arrangements over \mathbb{Z}.

Question

How can we generalize the characteristic quasi-polynomial?
A generalization must be related with

- Elementary divisors.
(Structure theorem of finitely generated module)
- Greatest common divisors.
(Unique factorization into primes)
\rightsquigarrow We consider Dedekind domains!

Let \mathcal{O} be a Dedekind domain such that the residue ring $\mathcal{O} / \mathfrak{a}$ is finite for any nonzero ideal \mathfrak{a} of \mathcal{O}.

Example

$$
\mathbb{Z}, \mathbb{Z}[\sqrt{-1}], \mathbb{Z}[\sqrt{2}], \mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right], \mathbb{F}_{q}[t]
$$

Let $\mathcal{A}=\left\{c_{1}, \ldots, c_{n}\right\} \subseteq \mathcal{O}^{\ell}$ be a finite subset (coefficient column vectors).
Given an \mathcal{O}-module M,

$$
\begin{aligned}
H_{i}(M) & :=\left\{x \in M^{\ell} \mid x c_{i}=0\right\}, \\
\mathcal{A}(M) & :=\left\{H_{1}(M), \ldots, H_{n}(M)\right\} .
\end{aligned}
$$

Let \mathfrak{a} be a nonzero ideal of \mathcal{O}. Define $\chi_{\mathcal{A}}^{\text {quasi }}(\mathfrak{a})$ by

$$
\chi_{\mathcal{A}}^{\text {quasi }}(\mathfrak{a})=\#\left((\mathcal{O} / \mathfrak{a})^{\ell} \backslash \bigcup_{H \in \mathcal{A}(\mathcal{O} / \mathfrak{a})} H\right)
$$

Theorem (Kuroda-T (2024))

$\chi_{\mathcal{A}}^{\text {quasi }}(\mathfrak{a})$ behaves like a quasi-polynomial with
GCD-property. Namely, there exist a nonzero ideal ρ (period) and polynomials $f_{\mathcal{A}}^{\kappa}(t) \in \mathbb{Z}[t]$ for each divisor κ of ρ (constituent) such that

$$
\mathfrak{a}+\rho=\kappa \Longrightarrow \chi_{\mathcal{A}}^{\text {quasi }}(\mathfrak{a})=f_{\mathcal{A}}^{\kappa}(N(\mathfrak{a}))
$$

where $N(\mathfrak{a})$ denotes the absolute norm of \mathfrak{a} defined by

$$
N(\mathfrak{a})=\#(\mathcal{O} / \mathfrak{a})
$$

Moreover,

- $f_{\mathcal{A}}^{\langle 1\rangle}(t)=\chi(\mathcal{A}(K), t)$, where K is the field of fractions \mathcal{O}.
- Every constituent comes from the poset $L(\mathcal{A}(K / \mathcal{O}))$.

Non-crystallographic root systems H_{3} and H_{4} are defined over the Dedekind domain $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.
Moreover, every complex reflection group admit a "root system" over a Dedekind domain defined by Lehrer and Taylor. Now, we can consider the characteristic quasi-polynomials for these root systems.
We are lucky if they have interesting properties.

Example

Consider G_{33}. The ring of definition is $\mathcal{O}=\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$ and the period is $\rho=\langle 2 \sqrt{-3}\rangle$. The Coxeter number is $h=18$.

$$
\begin{aligned}
f^{\langle 1\rangle}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+17169 t-12285 \\
& =(t-1)(t-7)(t-9)(t-13)(t-15) \\
f^{\langle 2\rangle}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+17574 t-18360 \\
& =(t-4)(t-15)\left(t^{3}-26 t^{2}+196 t-306\right) \\
f^{\langle\sqrt{-3}\rangle}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+18129 t-20925 \\
& =(t-3)(t-9)\left(t^{3}-33 t^{2}+327 t-775\right) \\
f^{\langle 2 \sqrt{-3\rangle}}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+18534 t-27000
\end{aligned}
$$

Non-crystallographic root systems H_{3} and H_{4} are defined over the Dedekind domain $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.
Moreover, every complex reflection group admit a "root system" over a Dedekind domain defined by Lehrer and Taylor. Now, we can consider the characteristic quasi-polynomials for these root systems.
We are lucky if they have interesting properties.

Example

Consider G_{33}. The ring of definition is $\mathcal{O}=\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$ and the period is $\rho=\langle 2 \sqrt{-3}\rangle$. The Coxeter number is $h=18$.

$$
\begin{aligned}
f^{\langle 1\rangle}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+17169 t-12285 \\
& =(t-1)(t-7)(t-9)(t-13)(t-15) \\
f^{\langle 2\rangle}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+17574 t-18360 \\
& =(t-4)(t-15)\left(t^{3}-26 t^{2}+196 t-306\right) \\
f^{\langle\sqrt{-3}\rangle}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+18129 t-20925 \\
& =(t-3)(t-9)\left(t^{3}-33 t^{2}+327 t-775\right) \\
f^{\langle 2 \sqrt{-3\rangle}}(t) & =t^{5}-45 t^{4}+750 t^{3}-5590 t^{2}+18534 t-27000
\end{aligned}
$$

We computed the period for the case G is exceptional， well－generated，and irreducible．

G	\mathcal{O}	ρ	h				
G_{4}	$\mathbb{Z}[\omega]$	＜1）	6	$\mathrm{G}_{23}=\mathrm{H}_{3}$	$\mathbb{Z}[\tau]$ $\mathbb{Z}[\lambda]$	＜ 4	14
G_{5}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{-3}\rangle$	12	G_{25}	$\mathbb{Z}[\omega]$	$\langle\sqrt{-3}\rangle$	12
G_{6}	$\mathbb{Z}[i, \omega]$	$\langle 1+i\rangle$	12	G_{26}	$\mathbb{Z}[\omega]$	〈6）	18
G8	$\mathbb{Z}[i]$	$\langle 1+i\rangle$	12	G_{27}	$\mathbb{Z}[\omega, \tau]$	$\langle 4 \sqrt{-3}\rangle$	30
G9	$\mathbb{Z}\left[\zeta_{8}\right]$	＜6＞	24	$\mathrm{G}_{28}=\mathrm{F}_{4}$	\mathbb{Z}	$\langle 12\rangle$	12
G_{10}	$\mathbb{Z}[i, \omega]$	$\langle(1+i) \sqrt{-3}\rangle$	24	G_{29}	$\mathbb{Z}[i]$	$\langle 10(1+i)\rangle$	20
G_{14}	$\mathbb{Z}[\omega, \sqrt{-2}]$	（6）	24	$\mathrm{G}_{30}=\mathrm{H}_{4}$	$\mathbb{Z}[\tau]$	$\langle 6 \sqrt{5}\rangle$	30
G_{16}	$\mathbb{Z}\left[\zeta_{5}\right]$	$\left\langle 1-\zeta_{5}\right\rangle$	30	G_{32}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{-3}\rangle$	30
G_{17}	$\mathbb{Z}\left[i, \zeta_{5}\right]$	$\langle 6 \sqrt{5}\rangle$	60	G_{33}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{-3}\rangle$	18
G_{18}	$\mathbb{Z}\left[\omega, \tau_{5}\right]$	$\left\langle 2 \sqrt{-3}\left(1-\zeta_{15}^{3}\right)\right\rangle$	60	G_{34}	$\mathbb{Z}[\omega]$	（84）	42
G_{20}	$\mathbb{Z}[\omega, \tau]$	$\langle 2 \sqrt{-3}\rangle$	30	$G_{35}=E_{6}$	\mathbb{Z}	（6）	12
G_{21}	$\mathbb{Z}[i, \omega, \tau]$	$\langle 6 \sqrt{5}\rangle$	60	$\mathrm{G}_{36}=\mathrm{E}_{7}$	\mathbb{Z}	〈12）	18
				$\mathrm{G}_{37}=\mathrm{E}_{8}$	\mathbb{Z}	〈60〉	30

We computed the period for the case G is exceptional, well-generated, and irreducible.

G	\mathcal{O}	ρ	h				
G_{4}	$\mathbb{Z}[\omega]$	$\langle 1\rangle$	$G_{23}=\mathrm{H}_{3}$	$\mathbb{Z}[\tau]$	$\langle 2\rangle$	10	
G_{5}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{-3}\rangle$	12	G_{24}	$\mathbb{Z}[\lambda]$	$\langle 4\rangle$	14
G_{6}	$\mathbb{Z}[i, \omega]$	$\langle 1+i\rangle$	12	G_{25}	$\mathbb{Z}[\omega]$	$\langle\sqrt{-3}\rangle$	12
G_{8}	$\mathbb{Z}[i]$	$\langle 1+i\rangle$	12	G_{26}	$\mathbb{Z}[\omega]$	$\langle 6\rangle$	18
G_{9}	$\mathbb{Z}[\zeta 8]$	$\langle 6\rangle$	24	G_{27}	$\mathbb{Z}[\omega, \tau]$	$\langle 4 \sqrt{-3}\rangle$	30
G_{10}	$\mathbb{Z}[i, \omega]$	$\langle(1+i) \sqrt{-3}\rangle$	24	G_{28}	$\mathrm{~F}_{4}$	\mathbb{Z}	$\langle 12\rangle$
G_{14}	$\mathbb{Z}[\omega, \sqrt{-2}]$	$\langle 6\rangle$	24	$G_{30}=\mathrm{H}_{4}$	$\mathbb{Z}[\tau]$	$\langle 10(1+i)\rangle$	12
G_{16}	$\mathbb{Z}\left[\zeta_{5}\right]$	$\left\langle 1-\zeta_{5}\right\rangle$	30	G_{32}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{5}\rangle$	30
G_{17}	$\mathbb{Z}\left[i, \zeta_{5}\right]$	$\langle 6 \sqrt{5}\rangle$	60	G_{33}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{-3}\rangle$	30
G_{18}	$\mathbb{Z}\left[\omega, \zeta_{5}\right]$	$\left\langle 2 \sqrt{-3}\left(1-\zeta_{15}^{3}\right)\right\rangle$	60	G_{34}	$\mathbb{Z}[\omega]$	$\langle 84\rangle$	18
G_{20}	$\mathbb{Z}[\omega, \tau]$	$\langle 2 \sqrt{-3}\rangle$	30	$G_{35}=\mathrm{E}_{6}$	\mathbb{Z}	$\langle 6\rangle$	42
G_{21}	$\mathbb{Z}[i, \omega, \tau]$	$\langle 6 \sqrt{5}\rangle$	60	$G_{36}=\mathrm{E}_{7}$	\mathbb{Z}	$\langle 12\rangle$	12
$G_{37}=\mathrm{E}_{8}$	\mathbb{Z}	$\langle 60\rangle$	18				

$$
i=\sqrt{-1}, \omega=\frac{-1+\sqrt{-3}}{2}, \tau=\frac{1+\sqrt{5}}{2}, \lambda=\frac{-1+\sqrt{-7}}{2}, \zeta_{k}=e^{2 \pi i / k}
$$

Lucky?

We computed the period for the case G is exceptional, well-generated, and irreducible.

G	\mathcal{O}	ρ	h				
G_{4}	$\mathbb{Z}[\omega]$	$\langle 1\rangle$	$G_{23}=\mathrm{H}_{3}$	$\mathbb{Z}[\tau]$	$\langle 2\rangle$	10	
G_{5}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{-3}\rangle$	12	G_{24}	$\mathbb{Z}[\lambda]$	$\langle 4\rangle$	14
G_{6}	$\mathbb{Z}[i, \omega]$	$\langle 1+i\rangle$	12	G_{25}	$\mathbb{Z}[\omega]$	$\langle\sqrt{-3}\rangle$	12
G_{8}	$\mathbb{Z}[i]$	$\langle 1+i\rangle$	12	G_{26}	$\mathbb{Z}[\omega]$	$\langle 6\rangle$	18
G_{9}	$\mathbb{Z}[\zeta 8]$	$\langle 6\rangle$	24	G_{27}	$\mathbb{Z}[\omega, \tau]$	$\langle 4 \sqrt{-3}\rangle$	30
G_{10}	$\mathbb{Z}[i, \omega]$	$\langle(1+i) \sqrt{-3}\rangle$	24	G_{28}	$\mathrm{~F}_{4}$	\mathbb{Z}	$\langle 12\rangle$
G_{14}	$\mathbb{Z}[\omega, \sqrt{-2}]$	$\langle 6\rangle$	24	$G_{30}=\mathrm{H}_{4}$	$\mathbb{Z}[\tau]$	$\langle 10(1+i)\rangle$	12
G_{16}	$\mathbb{Z}\left[\zeta_{5}\right]$	$\left\langle 1-\zeta_{5}\right\rangle$	30	G_{32}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{5}\rangle$	30
G_{17}	$\mathbb{Z}\left[i, \zeta_{5}\right]$	$\langle 6 \sqrt{5}\rangle$	60	G_{33}	$\mathbb{Z}[\omega]$	$\langle 2 \sqrt{-3}\rangle$	30
G_{18}	$\mathbb{Z}\left[\omega, \zeta_{5}\right]$	$\left\langle 2 \sqrt{-3}\left(1-\zeta_{15}^{3}\right)\right\rangle$	60	G_{34}	$\mathbb{Z}[\omega]$	$\langle 84\rangle$	18
G_{20}	$\mathbb{Z}[\omega, \tau]$	$\langle 2 \sqrt{-3}\rangle$	30	$G_{35}=\mathrm{E}_{6}$	\mathbb{Z}	$\langle 6\rangle$	42
G_{21}	$\mathbb{Z}[i, \omega, \tau]$	$\langle 6 \sqrt{5}\rangle$	60	$G_{36}=\mathrm{E}_{7}$	\mathbb{Z}	$\langle 12\rangle$	12
$G_{37}=\mathrm{E}_{8}$	\mathbb{Z}	$\langle 60\rangle$	18				

$$
i=\sqrt{-1}, \omega=\frac{-1+\sqrt{-3}}{2}, \tau=\frac{1+\sqrt{5}}{2}, \lambda=\frac{-1+\sqrt{-7}}{2}, \zeta_{k}=e^{2 \pi i / k}
$$

Lucky?

Theorem (Kuroda-T)

Every exceptional well-generated irreducible complex reflection group G admits "root system" such that the radical of the period divides the Coxeter number.

