
The characteristic
quasi-polynomials for

exceptional well-generated
complex reflection groups

Shuhei Tsujie (Hokkaido University of Education)
Joint work with

Masamichi Kuroda （Nippon Bunri University）

FPSAC 2024
JULY 29, 2024 (Ruhr-Universität Bochum)

1 / 21



Plan:

1. Hyperplane arrangements and characteristic polynomials

2. Characteristic quasi-polynomials

3. Generalization of characteristic quasi-polynomials

4. Result for complex reflection groups

2 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



A : Hyperplane arrangement (finite collection of hyperplanes)

L(A) :=

{ ⋂
H∈B

H ̸= ∅

∣∣∣∣∣ B ⊆ A
}

: The intersection poset

3 / 21



� �
The characteristic polynomial is defined by

χ(A, t) :=
∑

X∈L(A)

µ(X)tdimX ,

where the Möbius function µ is defined by

µ(0̂) := 1, µ(X) := −
∑
Y <X

µ(Y )

� �
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� �
Theorem (Zaslavsky)
Let A be an arrangement over R.

|χ(A,−1)| = #chambers

|χ(A, 1)| = #bounded chambers

� �
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� �
Proposition
Let A be an arrangement in Fℓ

p. Then

χ(A, p) = #

(
Fℓ
p \

⋃
H∈A

H

)
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Let A be an arrangement over Q.
We may suppose that every hyperplane is defined by a linear
equation with integer coefficients.
Let p be a prime large enough. Taking modulo p of the
coefficients yields the arrangement Ap over Fp such that

L(A) ≃ L(Ap) and hence χ(A, t) = χ(Ap, t).

� �
Proposition (Finite Field Method)
Let A be an arrangement in Qℓ. Then there are infinitely
many primes p such that

χ(A, p) = #

Fℓ
p \

⋃
H∈Ap

H


� �
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Let q be a positive integer.
We can consider “hyperplane” arrangement Aq in (Z/qZ)ℓ by
taking modulo q.� �
Question
Does the counting function in q

#

(Z/qZ)ℓ \
⋃

H∈Aq

H


have interesting property?� �

Remark
The equations x = 0 and 2x = 0 define the same hyperplane
but if we take modulo 2, then they become different equations
x = 0 and 0 = 0. Therefore we must fix the coefficients to
consider the question above.
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From now on, let A = {c1, . . . , cn} be a finite subset in Zℓ

(coefficient column vectors).
For any Z-module M , we define “hyperplane arrangement”
A(M) by

Hi(M) :=
{
x ∈M ℓ

∣∣ xci = 0
}
,

A(M) := {H1(M), . . . , Hn(M) } .

� �
Define the characteristic quasi-polynomial χquasi

A by

χquasi
A (q) := #

(Z/qZ)ℓ \
⋃

H∈A(Z/qZ)

H


� �
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� �
Theorem (Kamiya-Takemura-Terao (2008))
χquasi
A is a quasi-polynomial in q. Namely, there exists a

positive integer ρ (period) and polynomials
f 1
A(t), . . . , f

ρ
A(t) ∈ Z[t] (constituents) such that

q ≡ k (mod ρ) =⇒ χquasi
A (q) = fk

A(q).

� �
Moreover,

• The first constituent f 1
A(t) coincides with the

characteristic polynomial χ(A(Q), t).

• We can compute a period by calculating elementary
divisors of some submatrices of (c1 · · · cn).
• GCD-property:
gcd(k1, ρ) = gcd(k2, ρ) =⇒ fk1

A (t) = fk2
A (t)

Hence χquasi
A is determined by constituents fk(t) such

that k is a divisor of ρ.
10 / 21



Example

A =

{(
1
0

)
,

(
0
1

)
,

(
1
−1

)
,

(
1
1

)}
, ρ = 2

f 1
A(t) = (t− 1)(t− 3) = χ(A(Q), t),

f 2
A(t) = (t− 2)2
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� �
Question
Does every constituent fk

A(t) have combinatorial meaning?� �� �
Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga)
Every constituent comes from the poset of layers of the
corresponding toric arrangement.� �
A(C×) = {H1(C×), . . . , Hn(C×)} : toric arrangement

Hi(C×) =
{
x ∈ (C×)ℓ

∣∣ xc1i
1 · · · xcni

n = 1
}

We call a connected component of the intersection of some
Hi(C×)’s a layer.
Let L(A(C×)) denote the poset of layers. (The order is the
reverse inclusion.)
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� �
Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga)
The k-th constituent fk

A(t) is the characteristic polynomial
of the poset L(A(C×))[k] defined by

L(A(C×))[k] :=
{
Z ∈ L(A(C×))

∣∣ Z has a k-torsion
}
.

More precisely,

fk
A =

∑
Z∈L(A(C×))[k]

µ(Z)tdimZ .

� �
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Let Φ be a crystallographic root system and {α1, . . . , αℓ} its
simple system.
Every root is an integral linear combination of simple roots.
Let AΦ ⊆ Zℓ be the collection of the coefficient vectors.

Example
Φ = ΦE6 . The period is ρ = 6.

f 1(t) = (t− 1)(t− 4)(t− 5)(t− 7)(t− 8)(t− 11)

f 2(t) = (t− 2)(t− 4)(t− 8)(t− 10)(t2 − 12t+ 26)

f 3(t) = (t− 3)(t− 9)(t4 − 24t3 + 195t2 − 612t+ 480)

f 6(t) = (t− 6)2(t4 − 24t3 + 186t2 − 504t+ 480)

t←→ 12− t χquasi
E6

(q) > 0⇐⇒ q ≥ 12

hE6 = 12 Coxeter number
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� �
Theorem (Kamiya–Takemura–Terao)

χquasi
Φ (q) > 0⇐⇒ q ≥ h� �

� �
Theorem (Kamiya–Takemura–Terao, Suter,
Yoshinaga)

χquasi
Φ (q) = (−1)ℓχquasi

Φ (h− q)� �

15 / 21



type period Coxeter number
Aℓ 1 ℓ+ 1
Bℓ 2 2ℓ
Cℓ 2 2ℓ
Dℓ 2 2ℓ− 2
E6 6 12
E7 12 18
E8 60 30
F4 12 12
G2 6 6

� �
Theorem (Kamiya–Takemura–Terao, Suter)
The radical of the period ρ divides the Coxeter number h.� �

From this property we have

gcd(q, ρ) = 1⇐⇒ gcd(h− q, ρ) = 1

χ(AΦ(Q), t) = (−1)ℓχ(AΦ(Q), h− t)
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Thus, the characteristic quasi-polynomial is very interesting.
However, it can be defined only for arrangements over Z.� �
Question
How can we generalize the characteristic quasi-polynomial?� �

A generalization must be related with

• Elementary divisors.
(Structure theorem of finitely generated module)

• Greatest common divisors.
(Unique factorization into primes)

⇝ We consider Dedekind domains!
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Let O be a Dedekind domain such that the residue ring O/a is
finite for any nonzero ideal a of O.� �
Example
Z,Z[

√
−1],Z[

√
2],Z[−1+

√
−3

2
],Fq[t]� �

Let A = {c1, . . . , cn} ⊆ Oℓ be a finite subset (coefficient
column vectors).
Given an O-module M ,

Hi(M) :=
{
x ∈M ℓ

∣∣ xci = 0
}
,

A(M) := {H1(M), . . . , Hn(M) } .� �
Let a be a nonzero ideal of O. Define χquasi

A (a) by

χquasi
A (a) = #

(O/a)ℓ \
⋃

H∈A(O/a)

H


� �18 / 21



� �
Theorem (Kuroda-T (2024))
χquasi
A (a) behaves like a quasi-polynomial with

GCD-property. Namely, there exist a nonzero ideal ρ
(period) and polynomials fκ

A(t) ∈ Z[t] for each divisor κ
of ρ (constituent) such that

a+ ρ = κ =⇒ χquasi
A (a) = fκ

A(N(a)),

where N(a) denotes the absolute norm of a defined by

N(a) = # (O/a)

� �
Moreover,

• f
⟨1⟩
A (t) = χ(A(K), t), where K is the field of fractions O.

• Every constituent comes from the poset L(A(K/O)).
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Non-crystallographic root systems H3 and H4 are defined over
the Dedekind domain Z[1+

√
5

2
].

Moreover, every complex reflection group admit a “root
system” over a Dedekind domain defined by Lehrer and Taylor.
Now, we can consider the characteristic quasi-polynomials for
these root systems.
We are lucky if they have interesting properties.

Example
Consider G33. The ring of definition is O = Z[−1+

√
−3

2
] and

the period is ρ = ⟨2
√
−3⟩. The Coxeter number is h = 18.

Unlucky?
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We computed the period for the case G is exceptional,
well-generated, and irreducible.

Lucky?� �
Theorem (Kuroda-T)
Every exceptional well-generated irreducible complex
reflection group G admits “root system” such that the
radical of the period divides the Coxeter number.� �
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