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The characteristic polynomial is defined by

WA = 3 px)m,

XeL(A)

where the Mobius function p is defined by

W0 =1, p(x)=- 3 u(y)

Y<X
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The characteristic polynomial is defined by

XA L) = 3 (),

XeL(A)

where the Mobius function p is defined by

W0 =1, p(x)=- 3 u(y)

Y<X

x(At) =t —4t+5
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[ Theorem (Zaslavsky)

Let A be an arrangement over R.

|X(A, —1)| = #chambers
IX(A,1)| = #bounded chambers

x(A 1) =t> —4t+5
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KProposition
Let A be an arrangement in F,. Then

X(A,p) = # (Fﬁ\ U H)
HeA
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Let A be an arrangement over Q.

We may suppose that every hyperplane is defined by a linear
equation with integer coefficients.

Let p be a prime large enough. Taking modulo p of the
coefficients yields the arrangement A, over F,, such that

L(A) ~ L(A,) and hence x(A,t) = x(A,,1).
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Let A be an arrangement over Q.

We may suppose that every hyperplane is defined by a linear
equation with integer coefficients.

Let p be a prime large enough. Taking modulo p of the
coefficients yields the arrangement A, over F,, such that

L(A) ~ L(A,) and hence x(A,t) = x(A,,1).

[ Proposition (Finite Field Method) h
Let A be an arrangement in Q. Then there are infinitely
many primes p such that

X(Ap) =#|F\ |J H
HeA,
\_ /
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Let ¢ be a positive integer.
We can consider “hyperplane” arrangement A, in (Z/qZ)" by

taking modulo gq.

(" Question )
Does the counting function in g
# | (2/qz)\ U H
HeA,
have interesting property?
J

Remark
The equations x = 0 and 2x = 0 define the same hyperplane

but if we take modulo 2, then they become different equations
z =0 and 0 = 0. Therefore we must fix the coefficients to

consider the question above.
8/21



From now on, let A= {ci,...,c,} be a finite subset in Z*
(coefficient column vectors).

For any Z-module M, we define “hyperplane arrangement”
A(M) by

Hi(M)={zeM |zc;=0},
A(M) = { Hi(M),...,H,(M) }.

4 M

Define the characteristic quasi-polynomial XjuaSi by

X&) =# [ 2z |J H

HeA(Z/qZ)
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[ Theorem (Kamiya-Takemura-Terao (2008)) h

Xflfm is a quasi-polynomial in q. Namely, there exists a

positive integer p (period) and polynomials
fa(t), ..., f4(t) € Z[t] (constituents) such that
g=Fk (mod p) = x4 (q) = fh(q).

N /

Moreover,

e The first constituent f}(t) coincides with the
characteristic polynomial x(A(Q), ).

e We can compute a period by calculating elementary
divisors of some submatrices of (c1---¢,).

e GCD-property:
ged(ki, p) = ged(ke, p) = ) = fR2)
Hence x| is determined by constituents f*(t) such
that k is a divisor of p.
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Example




(Question R

Does every constituent f%(¢) have combinatorial meaning?

/
)\

[ Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga

Every constituent comes from the poset of layers of the
corresponding toric arrangement.

/

A(C*) = {H(C),..., H,(C*)}: toric arrangement
H;(C*) = {x € (CX)L; ‘ it =1 }
We call a connected component of the intersection of some
H;(C*)'s a layer.

Let L(A(C*)) denote the poset of layers. (The order is the
reverse inclusion.)
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[ Theorem (Liu-Tran-Yoshinaga, Tran-Yoshinaga) h

The k-th constituent f%(t) is the characteristic polynomial
of the poset L(A(C*))[k] defined by

L(A(C*))[k] == { Z € L(A(C)) | Z has a k-torsion } .

More precisely,

fi= >, w2

ZeL(A(CX))[k]
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Let @ be a crystallographic root system and {a, ..., .} its
simple system.

Every root is an integral linear combination of simple roots.
Let Ay C Z° be the collection of the coefficient vectors.

Example

® = &g,. The period is p = 6.
i) =@t =Dt —4)(t=5)(t = T)(t - 8)(t —11)
f2t) = (t —2)(t — 4)(t — 8)(t — 10)(t* — 12t + 26)
F2t) = (t —3)(t — 9)(t* — 24¢® 4 195t% — 612t + 480)
fO(t) = (t — 6)*(t* — 241 4 186t* — 504t + 480)

te— 12—t Yp*i(g) >0 <= g > 12

hg, =12 Coxeter number

14 /21



Theorem (Kamiya—Takemura—Terao)

quasi

Xo (9)>0<+=q=>h

Theorem (Kamiya—Takemura—Terao, Suter,
Yoshinaga)

Xaes(g) = (=1)'xE™(h — q)
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type | period | Coxeter number
A, 1 (+1
B, 2 20
Cy 2 20
D, | 2 20 — 2
E¢ 6 12
E- 12 18
Ex 60 30
F, | 12 12
Go 6 6
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type | period | Coxeter number

A, 1 (+1

B, 2 20

Cy 2 20

D, | 2 20 — 2
E¢ 6 12

E- 12 18

Ex 60 30

F, | 12 12

Go 6 6

Theorem (Kamiya—Takemura—Terao, Suter)
The radical of the period p divides the Coxeter number h.

From this property we have
ged(q, p) =1 <= ged(h —q¢,p) =1
V(Aa(@), ) = (~1)X(As(Q), h — 1) "



Thus, the characteristic quasi-polynomial is very interesting.
However, it can be defined only for arrangements over Z.

Question
How can we generalize the characteristic quasi-polynomial?

A generalization must be related with
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Question
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A generalization must be related with

e Elementary divisors.
(Structure theorem of finitely generated module)

e Greatest common divisors.
(Unique factorization into primes)

~~ We consider Dedekind domains!
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Let O be a Dedekind domain such that the residue ring O/a is
finite for any nonzero ideal a of O.

Example
Z,Z[V=1), Z[v2), Z| 7555 Ry 1]

Let A= {ci,...,c,} C O be a finite subset (coefficient
column vectors).
Given an O-module M,

Hi(M)={zeM |zc;=0},
A(M) = { Hi(M), ..., H,(M)}.
4 )

Let a be a nonzero ideal of O. Define x%*(a) by

@ =# 0N\ | H

HeA(O/a)

k /) 18/21




[ Theorem (Kuroda-T (2024))

quasi

X (a) behaves like a quasi-polynomial with
GCD-property. Namely, there exist a nonzero ideal p
(period) and polynomials f(t) € Z|[t] for each divisor k
of p (constituent) such that

8 p= k= W (a) = 4N (@),

where N (a) denotes the absolute norm of a defined by

N(a) = #(0/a)

-

/

Moreover,

. ﬁll) (t) = x(A(K),t), where K is the field of fractions O.

e Every constituent comes from the poset L(A(K/QO)).
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Non-crystallographic root systems H3 and H, are defined over
the Dedekind domain Z[*£/],
Moreover, every complex reflection group admit a “root

system” over a Dedekind domain defined by Lehrer and Taylor.

Now, we can consider the characteristic quasi-polynomials for
these root systems.
We are lucky if they have interesting properties.

Example
Consider G33. The ring of definition is O = Z[%] and
the period is p = (2v/—3). The Coxeter number is h = 18.
FO(F) = 5 — 45¢* + 7506° — 559012 + 17169t — 12285.
= (t—1)(t=7)(t—9)(t —13)(t — 15).
FR () = £° — 45¢* + 7501° — 559012 + 17574t — 18360.
= (t —4)(t — 15) (£ — 26£% + 196t — 306).
FYVZ3) (1) = £5 — 45 + 75083 — 5590¢2 + 18129¢ — 20925.
= (t=3)(t —9)(t> — 3312 + 327t — 775).
FVE3) (1) = 15 — 45¢* 4 75063 — 559012 + 18534t — 27000.
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Non-crystallographic root systems H3 and H, are defined over
the Dedekind domain Z[*£/],

Moreover, every complex reflection group admit a “root
system” over a Dedekind domain defined by Lehrer and Taylor.
Now, we can consider the characteristic quasi-polynomials for
these root systems.

We are lucky if they have interesting properties.

Example
Consider G33. The ring of definition is O = Z[%] and
the period is p = (2v/—3). The Coxeter number is h = 18.
FO(F) = 5 — 45¢* + 7506° — 559012 + 17169t — 12285.
= (t—1)(t=7)(t—9)(t —13)(t — 15).
FR () = £° — 45¢* + 7501° — 559012 + 17574t — 18360.
= (t —4)(t — 15) (£ — 26£% + 196t — 306).
FYVZ3) (1) = £5 — 45 + 75083 — 5590¢2 + 18129¢ — 20925.
= (t=3)(t —9)(t> — 3312 + 327t — 775).
FVE3) (1) = 15 — 45¢* 4 75063 — 559012 + 18534t — 27000.

Unlucky? 20/21



We computed the period for the case (G is exceptional,
well-generated, and irreducible.

G 0 P h Gy =Hs | Z[r @) 10
G 5] (L o | &2 ) 14
Gs Z[w] (2v=3) 2 g Z[w) (V=3) 12
Ge Z[i,w) (L+1) 12 Gl Z[w)] (6) 18
Gs z]i] (1+1) 12 Gor Z|w, 7] (4/=3) 30
Go Z[Zs) (6) 24 Cs=F Z (12) 2
Guo Z[i, ) (A+i)V=3) 24 | Gy (i) (1001 +1)) 20
Gua Z[w,v/~2] (6) 24 Gso = Hy | Z[1] (6V5) 30
G Z[gs) 1-2s) 30 | Gn Zw 2v=3) 30
Giy Z[i,{s) (6v/5) 60 Gss Z[w 2v-3) 18
Gis Z[w, 5] (2v/=3(1-255)) 60 Gas Zlw (84) 2
Gao Z]w, 7] (2¢/=3) 30 gss = Ea ; E?z > i;
7 36 = L7
G Ziwt (6v3) 60 Gy =Fs | Z (60) 30

ety ==tV —8 \/*3,7_1+\/5,)‘=*l+f e
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7 36 = L7
G Ziwt (6v3) 60 Gy =Fs | Z (60) 30
Ve 71%@ . 1+2¢5, i —1%@ [ = 2 Lucky?
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We computed the period for the case (G is exceptional,
well-generated, and irreducible.

G o P h

G Zel O I i
Gs Z[w] (2v/=3) 2 [ 2 Zlw) V3 1
Ge Z[i,w) (L+1) 12 Gl Z[w)] (6) 18
Gs z]i] (1+1) 12 Gor Z|w, 7] (4/=3) 30
Go Z[Cs] (6) 24 Gs=F |Z 12) 12
Guo Z[i, ) (A+i)V=3) 24 | Gy (i) (1001 +1)) 20
Gig Z[w,v/-2] (6) 24 Gz =Hy | Z[1] (6v/5) 30
Gie Z[Z5) (1-2¢5) 30 G2 Zlw (2v/=3) 30
Giy Z[i,{s) (6v/5) 60 Gss Z[w 2v-3) 18
Gis Z[w, 5] (2v/=3(1-255)) 60 Gas Zlw (84) 2
Gao Z]w, 7] (2¢/=3) 30 2*5 = Es ; 2?2) 1;

7 36 = L7
G Ziwt (6v3) 60 Gy =Fs | Z (60) 30
T P E 2V R E17 PO ET P Lucky?

Theorem (Kuroda-T)

Every exceptional well-generated irreducible complex
reflection group G admits “root system” such that the
radical of the period divides the Coxeter number.
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